Projects and Grants per year
Grants and Contracts Details
Description
Higher Acene I Fullerene Hybrids for Organic Solar Cells: Project Description
In proposal CHE 0749473, we set out to determine the factors influencing the stability of larger
linearly-fused aromatic hydrocarbons (acenes), and explore their potential for use in organic
field-effect transistors. While acenes as long as pentacene have been extensively exploited in
electronic applications,1 hexacene and longer members of the series remain largely
unexplored.2 A potential application for these small-band-gap materials is in the field of organic
photovoltaics, an area that has received significant attention due to the public's recent
realization that energy is a critical matter to the security and economy of the United States. We
did not consider any of the molecules presented or proposed in CHE 0749473 as viable
materials for organic solar cells, due to the typical low photostability of these large aromatic
systems.3 We have recently discovered that adducts between linear acenes and fullerenes are
quite stable, and suitable for use in organic photovoltaics.4 More importantly, we have found that
by altering substituents on the aromatic rings, we can shift the LUMO energy of the fullerene,
leading to changes in the open-circuit voltage (V0~) of the solar cell (see Figure 1).~ By altering
the silyl substituents, we are able to alter the crystal packing and phase separation of the
adduct, which is closely related to the current produced by the solar cell (the shod-circuit
current, ~ Thus, by applying the functionalization and crystal engineering principles
developed for acenes to acene-fullerene hybrids, we can tune two of the critical parameters of
low-cost organic solar cells.
Status | Finished |
---|---|
Effective start/end date | 7/8/09 → 1/31/10 |
Funding
- National Science Foundation
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Projects
- 1 Finished