Grants and Contracts Details
Description
Emergence of new viruses is a continuing threat to our society. Evolution of plusstranded
RNA viruses is frequently driven by RNA recombination, a process that joins
noncontiguous RNA segments together, creating novel combinations of genes or regulatory RNA
sequences. Recombination is important for RNA viruses to overcome immunity, jump species
and change viral pathogenicity in all types of living organisms. Studies on viral RNA
recombination are critical to understand the recombination process and the role of specific host
genes, whose roles in the recombination process are currently unknown.
The PI will use Tomato bushy stunt virus (TBSV), which is currently the most advanced
among viral systems to progress rapidly in understanding the mechanism of RNA recombination
and the role of the host genes. The PI's research opens up a completely new area with the
powerful TBSV-yeast model system, which has led to genome-wide screens identifying
host genes suppressing RNA recombination for the first time. Additional advantage of the
similarity of TBSV replicase proteins to proteins of important pathogens, such as Hepatitis C
virus (HCV), dengue virus, West Nile virus and other Flaviviruses and Pestiviruses. Collectively,
the major advances with TBSV allow the PI to conduct experiments on the roles of host factors
that are currently only feasible with TBSV, but will open new approaches for studying RNA
recombination/evolution for important human pathogens.
This proposal focuses on one of the key host factors suppressing RNA
recombination. The experiments will dissect the role of Pmr1p Ca2+/Mn2+pump in viral
RNA recombination. Pmr1 p is a ubiquitous and conserved protein in eukaryotes. The human
homologs of Pmr1 p have been shown to play critical roles in genetic diseases, such as Hailey-
Hailey Disease and Darier disease. In the absence of Pmr1p, the rate of TBSV RNA
recombination is extremely high demonstrating the critical role of the host in viral RNA
recombination. In order to characterize the role of Pmr1pin RNA recombination, the PI will use
the advanced genetics tools available for yeast in combination with biochemical approaches.
The results obtained in cell-free systems and in yeast model host, will also be confirmed in a
native plant host. In addition, in vitro experiments will be conducted with the RdRp of HCV, an
important human pathogen, to expand our knowledge on the possible role of Ca2+/Mn2+
pumps in HCVRNA recombination.
The following are major strengths of the proposal: (i) Viral RNA recombination is clearly of
immense importance for viruses to overcome immunity, jump species and change
pathogenicity in all types of living organisms. (ii) The combination of yeast and in vitro systems
developed by the PI is currently the only one in the world suitable for studying the mechanism
of host factors involvement in viral RNA recombination. (iii) This research is expected to lead to
groundbreaking new discoveries in viral RNA recombination. The highly tractable in vitro and in
vivo TBSV system developed by the PI could prove highly beneficial to studies of other, less
amenable RNA viruses. The research holds promise of benefiting society by leading to
groundbreaking results in the area of virus recombination/evolution, host-virus interaction and
the emergence of new viruses.
Status | Finished |
---|---|
Effective start/end date | 5/22/09 → 4/30/12 |
Funding
- National Institute of Allergy and Infectious Diseases: $379,470.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.