Grants and Contracts Details
Description
Tuberculosis (TB)—which is primarily caused by the bacterial pathogen Mycobacterium
tuberculosis (Mtb)—is an ancient disease that remains one of the deadliest communicable
diseases worldwide. A paramount concern heading into the future is the rapid rise in drugresistant
TB. The World Health Organization estimated 480,000 cases of TB with 190,000 deaths
in 2014 with resistance to the first-line anti-TB drugs isoniazid and rifampicin. The capuramycin
family of nucleoside antibiotics are excellent candidates for anti-TB drug discovery and
development because they (i) are considered new chemical entities with several unusual
structural features compared to all antibiotics including clinical anti-TB drugs, (ii) target a novel
and essential enzyme (translocase 1; TL1) in cell wall biosynthesis, (ii) have exceptional anti-Mtb
activity in vitro and in vivo, (iv) are bactericidal and kill Mtb faster than any first-line anti-TB drug
in vitro, and (v) have no toxicity. Our primary objectives in this proposal are to (i) define a
biosynthetic mechanism for the assembly of the unusual unsaturated hexuronic acid component
in capurmaycins and (ii) establish complementary chemical (via neoglycorandomization) and
biosynthetic (via native and nonnative glycosyltransferases) platforms for rapidly generating novel
hexuronic acid-substituted capuramycins that can be screened as TL1 inhibitors and for anti-Mtb
activity. Additionally, this library of analogues will be screened as potential substrates or inhibitors
of the capuramycin phosphotransferase CapP, which covalently modifies capuramycins as a
strategy of self-resistance within the producing strain.
Status | Finished |
---|---|
Effective start/end date | 1/1/17 → 12/31/21 |
Funding
- National Institute of Allergy and Infectious Diseases: $1,000,000.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.