Projects and Grants per year
Grants and Contracts Details
Description
PROJECT SUMMARY Overview: Spurred by recent mountain uplift, topographic complexity, and an
abundance of ecological interactions, tropical Andean plant clades exhibit some of the highest rates of
diversification across the Tree of Life. While this pattern is well-established, the processes that generate
this stunning pattern remain understudied. To gain insight into Andean plant diversification, the proposed
research adopts an integrative framework that ties novel technique development to the application of these
new methods in four Andean-centered plant clades that span two distinct Andean habitats: mid-elevation
cloud forests and high-elevation grasslands. First, we establish a phylogenetic framework (including
uncertainty) for each clade using genome skim and targeted sequence data. To explore phylogenetic
signal and infer the most accurate phylogenies possible, we adapt an existing phylogenomic pipeline,
SISRS (Schwartz et al. 2015), to incorporate complexities common in plant genome evolution, including
polyploidy and paralogy. Second, we develop novel state-dependent diversification models to jointly infer
the roles of long-distance dispersal, movement along elevational gradients, and trait evolution in lineage
diversification. By applying this shared framework to multiple clades that share Andean occurrence, but
differ in environmental preferences, morphology, and ecological interactions, we will capture the
complexity of species diversification processes in the tropical Andes, the World’s most species-rich
biodiversity hotspot. Intellectual Merit: We examine the roles of abiotic and biotic drivers of Andean
plant diversification across two integrated aims. In both, we develop new computational tools and
statistical models applicable beyond our study system. In Aim 1, we determine species relationships in
focal lineages, while closely examining genomic data to ensure accurate phylogenetic resolution. This
allows us to determine the impact of locus selection on phylogenetic inference, as well as to quantify
occurrence of introgression and incomplete lineage sorting. In Aim 2, we develop state-dependent
diversification models in RevBayes and apply these to newly-inferred phylogenies. These models will be
the first to integrate three aspects of organismal evolution that are commonly studied independently:
biogeography, trait evolution, and lineage diversification. This will be one of the first tests to test the
relative roles of abiotic and biotic drivers of diversification in a single integrated framework. By
comparing across clades, we will determine the generality (or idiosyncrasy) of biogeographic and
ecological processes facilitating rapid radiation in tropical Andean plants. This research enables not only
a clearer understanding of our focal groups, but also a more nuanced understanding of diversification
processes in topographically complex regions more broadly. Further, with an emphasis on collecting
phylogenomic, morphological, and distribution data from herbaria, this research highlights the multi-
dimensional importance of natural history collections in cutting-edge biological research. Broader
Impacts: A major goal of this proposal is to train and support the development of a diverse future
workforce in evolutionary biology. We accomplish this via the development Course-based Undergraduate
Research Experiences (CUREs), in consultation with an expert in inclusive pedagogy, to support the early
research training of students from groups underrepresented in STEM; by holistically training a diverse
team of researchers deliberately recruited from community programs that seek to increase participation in
STEM, including SACNAS and DiversifySEE; developing a computational outreach program to reach
communities of Native Hawaiian women; and by training international teams composed of students both
from the US and Colombia, allowing us to center the importance of diverse perspectives. Further, we will
build scientific infrastructure via the development of new methods, including an expansion of the open-
source SISRS pipeline and diversification models in RevBayes. This research both generates and relies on
herbarium collections for sequence and trait data, allowing us to add to biological collections and
genomic resources, develop efficient protocols, and demonstrate the 21st century relevance of natural
history collections. Finally, this collaborative research will build capacity and infrastructure in three
EPSCoR states, as well as provide opportunities for diverse US-based undergraduates in these states to
participate in international fieldwork and computational biology.
Status | Active |
---|---|
Effective start/end date | 4/1/23 → 7/31/25 |
Funding
- National Science Foundation: $431,424.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Projects
- 1 Active