Grants and Contracts Details
Description
There are nearly 6 million Americans with heart failure (HF), and roughly 550,000 new cases
are diagnosed each year. Despite advances in treatment strategies, the 5 year survival rate
remains less than 50%. Current standards for diagnosis include the use of magnetic resonance
imaging (MRI) in order to measure wall strain and ejection fraction. However, this does not
identify the underlying cause, or elucidate what is happening at the cell level. Since therapies
for HF induce transmurally dependent changes at the cell level, it is essential to have an
understanding at this scale. If cellular level function can be tied to performance at the global
level, this would create a very powerful tool for developing therapies to improve pump function
and reduce risk to patients. Deciding which therapy is best for the patient is nontrivial. The
primary goal of the proposed work is to develop a technique that can take patient specific data
and build a computational model that can predict which therapies will provide the best
improvement in pump function. The aims of the study are: (1) To investigate regional ventricular
function at the cell and global level using experimental measurements in rats, then use this data
to develop and validate animal specific models which include new contractile capabilities, and
(2) To investigate how drug therapies affect different transmural regions at the cell level, then
use this data in the computational model to predict changes in global function and compare to
MRI measurements of treated animals.
Status | Finished |
---|---|
Effective start/end date | 1/1/14 → 12/31/14 |
Funding
- American Heart Association Great Rivers Affiliate: $66,000.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.