Projects and Grants per year
Grants and Contracts Details
Description
This project seeks to develop a collection of resource management techniques
that quantify and improve the trade-off between QoS and cost in mobile edge
computing systems for computationally expensive services. The proposed work is
the first systematic study of concurrent QoS satisfaction and cost effectiveness of
multi-layer mobile edge computing systems. Activities will focus on i) developing
integer and mixed integer linear programming optimization and Markov decision
process models of joint service placement and request scheduling problems that
integrate both QoS and cost requirements in the model, ii) introducing efficient
algorithms and heuristics to solve the problems given both static and dynamic users,
iii) using a federated learning and deep reinforcement learning approach to find the
optimal solution in dynamic environments, iv) understanding and exploiting the
benefits of coding approaches, namely, random linear network coding and minimum
bandwidth codes for such frameworks by evaluating different coding strategies, and
v) implementing and evaluating the proposed algorithms on an a testbed built from
Raspberry pis, computers and other smart devices. Mobile edge computing is a key
technology that enables many of the IoT applications, thus the proposed work will
have a significant impact on bringing such applications closer to reality. PI has a
unique collection of research and technical experience in large scale network
management, mathematical modeling and implementation, and network coding that
will be used to conduct the goals of the project.
Status | Finished |
---|---|
Effective start/end date | 3/1/20 → 8/31/24 |
Funding
- National Science Foundation: $202,356.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Projects
- 1 Finished
-
REU Supplement: CRII: CSR: Federated Resource Management in Mobile Edge Computing
3/1/20 → 8/31/23
Project: Research project