Grants and Contracts Details
Description
The objective of this work is to enhance the predictive capabilities of the Finite Element
QUODDY code, by integrating various high performance computing tools to it. The strategies
among others include incorporating a rich blend of Fortran90 into QUODDY and in using
Domain Decomposition tools. The advanced features available in Fortran90 will bring the code
in line with object oriented languages. The parallel strategy will be based on Domain
Decomposition principles, and will use Message Passing Interface (MPI) protocols for all interprocessor
communication. The physics in the code will be improved by incorporating a nonhydrostatic
pressure and spatially varying mixing length modules. Together with a finer grid
resolution, this will pave the way for simulating internal hydraulic jumps. The resulting parallel
code will be tested on various platforms, both at the University of Kentucky and NOAA,
including cluster of workstations. Performance modeling will address to calculating the points of
diminishing return and no return. Our goal is to combine powerful algorithms and Krylov
Subspace Solvers with current generation high performance computers to enhance the
capabilities of QUODDY, both in terms of accelerating the simulation time and as a window for
better simulation of the physics of flow. The resulting code will be used for obtaining real time
forecasts of tidal waves in Chesapeake and Delaware Bays. This work is conjunction with
NOAA officials who oversee the planning and implementation of the real-time semi-operational
numerical models. The ideas we discuss are tested" over few existing codes, including the
commercial RMA2 code and the results presented. Our idea is to show that a robust parallel code
can be developed from any existing sequential code and we hope that this work will stimulate the
formulation and application of parallel computing for hydrodynamic flows. This research will be
used to train three graduate students in computational environmental fluid mechanics and high
performance computing, leading to two PhD degrees and one or more Masters degrees.
Status | Finished |
---|---|
Effective start/end date | 4/1/01 → 12/31/05 |
Funding
- Office of Naval Research: $297,718.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.