Grants and Contracts Details
Description
Computational fluid dynamics (CFD) is a discipline that is perpetually in search of greater computer power and
better algorithms. This search has intensified as the phenomena studied with CFD models have expanded from
traditional problems studied by aerospace engineers and meteorologists to more diverse designs and more
demanding challenges. For instance, the CFD group at the University of Kentucky (UK) has worked on
traditional challenges like simulating the flow through a turbine cascade [Suzen et ai, 2000] and on nontraditional
ones like evaluating means for noise reduction in inkjet printers [Xiong et ai, 2000]. Likewise, the
Comparative Planetology Laboratory (CPL) at the University of Louisville (UofL) has expanded high-resolution
atmospheric modeling from terrestrial applications to planetary applications such as Venus, Jupiter [Showman
& Dowling 2000], and Neptune [LeBeau & Dowling 1998].
High computational-cost CFD problems typically are solved at national supercomputer centers or similar
facilities with limited accessibility. However, CFD design problems of a practical nature fall into this class
regularly, requiring large corporations and universities to purchase expensive shared-memory supercomputers
such as those built by SGI and HP. The high up-front cost of CFD analysis places the technology beyond the
reach of many mainstream engineers and researchers. Thus, many projects that would gain long-term economic
advantages from CFD simulations never realize their potential. CFD code and system developers who find a
practical way to tip the balance of this equation to affordable simulations will enjoy strong demand for their
results. Even those organizations with substantial computer budgets, such as large laboratories, industries, and
operational weather-forecasting centers, stand to gain measurably from significantly cheaper and more efficient
means of performing CFD calculations.
We propose to develop inexpensive, high-performance clusters of PCs, or "Beowulfs" [Becker, et ai, 1995],
specialized for CFD applications, using the novel approach that the hardware, operating system, and application
code are optimized together rather than separately. We recognize that in the past few years some positive claims
have been made in favor of PC clusters in which the hype was bigger than the performance of the actual
systems. However, we will prove by construction that by expertly engineering the PC cluster design, using and
building tools to improve application performance, and restructuring the application code for the cluster, it is
possible to make grand-challenge-class CFO modeling accessible and affordable to mainstream engineers,
scientists, and industrialists. A powerful prototype of such a system (KLA T2) was built at UK this year for only
$40,000.
The approach will be applied to two operational CFO codes developed in Kentucky and a third code developed
by NASA that serve a range of NASA thermo-fluids investigations. The first is OVERFLOW, an established
NASA CFO solver based on Reynolds-Averaged Navier-Stokes (RANS) turbulence models. The second is
LESTooL a next-generation CFD model employing advanced turbulence modes. The third is EPIC (Explicit
Planetary Isentropic-Coordinate), an atmospheric model used to study planetary atmospheres. Three research
groups from UK and UofL will combine their talents with colleagues at NASA Ames, Langley, and lPL to carry
out this concerted, groundbreaking CFD development and application effort.
Status | Finished |
---|---|
Effective start/end date | 8/1/05 → 5/31/07 |
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.