Endothelin-2 in Ovarian Follicle Rupture

Grants and Contracts Details


Principal Investigator/Program Director (Last, First, Middle): Ko, CheMyong DESCRIPTION: See instructions. State the application's broad, long-term objectives and specific aims, making reference to the health relatedness of the project (i.e., relevance to the mission of the agency). Describe concisely the research design and methods for achieving these goals. Describe the rationale and techniques you will use to pursue these goals. In addition, in two or three sentences, describe in plain, lay language the relevance of this research to public health. If the application is funded, this description, as is, will become public information. Therefore, do not include proprietary/confidential information. DO NOT EXCEED THE SPACE PROVIDED. The goal of the proposed studies is to elucidate the mechanism of endothelin-2 (EDN-2) action in follicle rupture. The program of ovulation is activated by a surge of luteinizing hormone, which initiates dramatic changes in molecular, biochemical, and physical aspects of the ovary, eventually leading to rupture of follicles. However, the factors involved in and the mechanism governing the process of follicle rupture are yet to be unveiled. Using a gene expression profiling approach, we have identified EDN-2, a potent smooth muscle constrictor, which is exclusively and transiently expressed in the granulosa cells of periovulatory follicles immediately prior to ovulation. We found that EDN-2 induces rapid and sustained contraction in the ovarian tissue, while tezosentan, an endothelin receptor antagonist, released the contraction. These novel findings led us to hypothesize that EDN-2 directly constricts periovulatory follicles leading to the rupture of the follicle. Supporting the hypothesis, immunohistochemical analysis identified a well-organized smooth muscle layer in the theca externa of each follicle, which forms a sponge-like smooth muscle network at the whole ovarian level. Furthermore, we found that intraovarian injection of tezosentan prior to ovulation completely blocked follicle rupture. In this study, we will elucidate the mechanism of EDN-2 action in follicle rupture. We will determine the target tissues of EDN-2 action, the endothelin receptor subtype(s) that mediates EDN-2 action, and the ovarian concentration of EDN-2. We will also determine the mechanism of endothelin-2 induced follicular constriction in relation to other ovary-produced vasoconstrice molecules (VIPs, PACAPs, and prostaglandins). In addition, the functional link of progesterone, estrogen, and prostaglandin to the follicle rupture in relation to EDN-2 will be explored. The major strength of this proposal is in the identification of EDN-2 and the ovarian smooth muscle network as the key components of follicle rupture. The novelty of the proposed experiments is the interdisplinary approachs (genome-wide gene expression profiling, intraovarian injection, and isometric tension measurement ). The proposed studies are exceptionally important in order to further our understanding of the mechanism of follicle rupture. The proposed experiments will provide clinical direction in identifying the therapeutic target for the cure of annovulatory symptoms, one of the leading causes of female infertility. PERFORMANCE SITE(S) (organization, city, state) Division of Reproductive Laboratory Sciences Department of Clinical Sciences College of Health Sciences University of Kentucky 900 South Limestone Street Lexington, KY 40536 PHS 398 (Rev 09/04) Page g Form Page 2
Effective start/end date5/15/062/28/12


  • National Institute of Child Health and Human Develop: $1,171,200.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.