Grants and Contracts Details
Description
Plant breeders are continually reminded of their role in “feeding the nine billion”, a role
that only increases in importance in the face of climate change. Recent results from crop
modeling research indicates that warming has already reduced yield gains in most wheat
growing regions and the trend is likely to continue. Other empirical reports suggest that
even over very short periods of time, on the order of 25-30 years, adaptive changes have
been documented in natural populations of wheat progenitors. Similarly, there are reports
of accelerated phenology in the form of earlier heading dates among wheat cultivars
grown over roughly the same time period. In effect, the impact of climate change is
being felt right now and breeding programs must take steps to develop selection criteria
for traits that will confer adaptation to climate change. While we don’t understand the
entire suite of traits impacted, it is likely that warming will impact pathogen populations,
and thus, the effectiveness of disease resistance QTL must be assessed. Fusarium head
blight (FHB), also known as head scab, is a devastating disease of wheat worldwide. The
literature tells us that in regions from central China to the UK FHB is expected to
intensify in response to climate change. The plan of work for this sabbatical proposal is
synthesize our FHB research and climate change research. Specifically, we will derive
near isogenic lines (NILs) from the cross ‘Pembroke 2014’ / ‘IL06-14262’ will be
derived from F4 plants that are heterozygous at the Fhb1 locus. Pembroke 2014 is
homozygous for Fhb1 resistance alleles, while the Illinois parent carries the susceptible
alleles. This will give us pairs of F4:5 lines derived from the same plant that are nearly
identical. This will provide the opportunity to assess the impact of warming on the Fhb1
locus, the most widely used FHB resistance gene. Though IL06-14262 does not carry
Fhb1 type resistance, it does have resistance derived from uncharacterized, quantitative,
unmapped loci that are simply referred to as “native resistance genes”. Thus we can
compare the effect of warming on Fhb1 derived resistance with native resistance. These
F4:5 lines will be grown under control and warmed conditions. Two warming methods
will be used: 1) active rhizosphere warming using heating cables and 2) passive night
warming of the canopy using thermal fabric shelters; our lab has experience with both
methods. The NILs will be evaluated for FHB resistance under control and warmed
conditions and the impact of warming assessed. The second component of the sabbatical
proposal pertains to genomic selection. To efficiently utilize “native” resistance genes,
genomic selection is an attractive approach. This will be an excellent population in which
to use genomic selection for FHB resistance in wheat. We have recently obtained an
instrument suitable for developing markers from SNP data. These markers can then be
used in marker assisted selection. Time will be spent in the lab of a colleague, currently
generating SNP data for wheat breeding projects using genotyping by sequencing, to
learn this technology so it can be implemented in our lab. The overarching goal of this
sabbatical is for the climate change breeding objectives to become a part of the
mainstream breeding program instead of a separate interest. To facilitate that transition,
research that synthesizes the climate change objectives and FHB resistance breeding
objectives will be conducted.
Status | Finished |
---|---|
Effective start/end date | 2/1/16 → 1/31/17 |
Funding
- National Institute of Food and Agriculture: $120,000.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.