Grants and Contracts per year
Grants and Contracts Details
Description
Examining the Effects of the Neuroprotective APOE2 Allele on Peripheral Immunometabolism
Apolipoprotein E (APOE) is an apolipoprotein involved in the transport of cholesterol and phospholipids in the
brain, contributing to lipid homeostasis by regulating cholesterol, triglycerides, and phospholipid metabolism and
transport throughout the body. Three isoforms of APOE exist (E2, E3, and E4) and confer various risks for
Alzheimer’s disease (AD). The APOE4 allele, found in approximately 14% of the population, provides the largest
risk for AD through mechanisms not completely known. Interestingly, the APOE2 allele, found in about 8% of the
population, is neuroprotective. APOE2 is associated with reduced AD risk, slower cognitive decline, and
increased longevity. The parent grant to support this project focuses on finding novel biomarkers to predict latent
disease and provide new molecular targets for the prevention and treatment of AD. The funded project makes
use of whole-body energy expenditure measured by indirect calorimetry to investigate the underlying metabolic
differences between APOE isoforms and how they associate with cognitive function. In conjunction with the
metabolic changes observed in AD patients and cognitively healthy E4 individuals, increased neuroinflammation
and abnormal immunological responses have also recently been described. This provides the impetus for the
current proposal, in which we aim to find meaningful peripheral biomarkers of latent disease with respect to
immunological dysfunctions associated with APOE4 carriage. The goal of this project is to elucidate differences
between immune cells known as peripheral blood mononuclear cells (PBMCs) of E2 individuals in comparison
to higher risk E3 and E4. It is well established that innate immune responses invoke metabolic reprogramming
in microglia and our lab has observed metabolic changes between both brain-derived microglia and peripheral
macrophages from the different APOE genotypes. Previous research in our laboratory identified a shift in the
metabolic preference of E4 astrocytes from oxidative phosphorylation to aerobic glycolysis, a metabolic shift that
can increase inflammatory mediators like lactate, providing further justification to examine immunometabolism
in the context of APOE in humans. Using transcriptomic and metabolomics approaches, the current project will
use PBMCs isolated from the blood of APOE genotyped study participants to shed light on the mechanisms by
which E4 individuals respond to inflammatory stimuli with the hypothesis that E4 peripheral immune cells exhibit
similar pro-inflammatory phenotypes as microglia, causing a metabolic shift within the cell toward aerobic
glycolysis while E2 cells favor oxidative phosphorylation.
Status | Finished |
---|---|
Effective start/end date | 8/1/21 → 3/31/23 |
Funding
- National Institute on Aging
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Projects
- 1 Finished
-
Changing the Energy Substrate Balance: Does APOE2 Promote Glucose Usage to Protect from Alzheimers Disease?
Johnson, L., Sun, R., Brandon, J., Kern, P. & Morris, A.
4/1/19 → 3/31/23
Project: Research project