Grants and Contracts Details
Description
The development of a comprehensive understanding of the process of neutron-induced fission of the
actinides is of fundamental importance in many applied areas of nuclear technology, most notably in the
design and operation of reactors and weapons, and in nuclear waste transmutation. While much is currently known about the basic fission process in these materials, important gaps remain in our knowledge of the details of fission. For example, it is known that high energy fission neutrons lead to the production of helium in reactors, yet the neutron yields near 10 MeV currently are not well measured. Various models are used to predict the distribution of fission neutron energies, but these must be tested against direct measurements. On the one hand, while the average neutron multiplicity is rather well known, it is much less certain how the neutrons are distributed in energy. And since a sizable fraction of the neutrons are emitted below 1 MeV where direct measurements do not currently exist, the average neutron multiplicity data cannot be used to constrain the high energy region. In short, our rather incomplete knowledge of the details of fission in uranium and plutonium limits our ability to understand processes which use these materials in technological application of importance to our national security and economy.
Status | Finished |
---|---|
Effective start/end date | 3/1/13 → 8/31/16 |
Funding
- Department of Energy: $450,000.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.