Grants and Contracts Details
Description
Lung cancer currently causes the most cancer-related deaths nationally and is a particularly heavy burden for
Kentucky. More effective treatment strategies are essential to better control this disease. Defects in the
pathways controlling cell death, also known as apoptosis, contribute both to the formation of tumors and the
frequent failure of anti-cancer treatments. While most tumor cells retain the ability to undergo apoptosis, they
have an altered balance between positive and negative apoptosis factors and thus survive signals that should
induce death. Many apoptosis factor genes encode multiple gene products with opposite functions through the
process of alternative RNA splicing. Thus, changes in alternative RNA splicing regulation, an important
mechanism of gene regulation known to be altered in cancer cells, is likely to be a contributing factor in altering
cellular apoptotic responses. Previous work with the Bcl-x gene has shown that an oligonucleotide that enhances
pro-apoptotic Bcl-xS and decreases anti-apototic Bcl-xL mRNA levels makes the cells more sensitive to
chemotherapy agents and radiation treatment. This provides a proof-of-principle that targeting alternative
splicing of apoptosis genes alters the sensitivity of cells to death induced by anti-cancer treatments. I propose
that modifying the splice patterns of multiple apoptosis factors to enhance expression of their pro-apoptotic forms
in lung cancer cells will sensitize the cells to anti-cancer treatments; a combination of effective oligonucleotides,
used in conjunction with standard treatments for lung cancer, will enhance treatment of drug-resistant tumors and
lower the effective treatment dose to be less toxic to the patient. To test this hypothesis, this grant will
characterize the RNA splicing patterns and expression levels of a set of apoptosis genes in a panel of lung tumor
cells and normal lung, design and test oligonucleotides to redirect splice patterns of target apoptosis genes, and
test oligonucleotide-transfected cells for increased sensitivity to drugs and radiation. At the end of two years I
plan to have identified a set of genes whose processing and/or expression can be altered with oligonucleotides to
sensitize lung cancer cells to anti-cancer treatments. In the future, this work will be expanded to include preclinical
animal models and will move toward translation applications.
Status | Finished |
---|---|
Effective start/end date | 7/1/06 → 7/1/06 |
Funding
- KY Lung Cancer Research Fund
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.