Grants and Contracts Details
Description
The incidence of carcinoma of the lung has been increasiniat an alarming rate during last 50 years and has
become the principal cause of cancer death. An estimated 169,400 new cases of lung cancer and an estimated
154,900 deaths from lung cancer occurred in this country during 2002 alone. There are two major types of-lung
cancer: non-small cell lung cancer and small cell lung cancer (SCLC). The latter, which accounts for about 25%
of all lung cancers, follows an aggressive clinical course despite initial sensitivity to chemotherapy and radiation.
It is well documented that SCLC patients suffer from persistent cough, dyspnea, and pulmonary inflammation.
These pulmonary stresses are debilitating and severely impair the quality of ilk of these patients. Mote importantly,
the pathogenic mechanism of these symptoms may be also involved in the deteriorating process of the disease. The
objective of this project is to understand the mechanisms underlying these pulmonary stresses in SCLC patients and
to develop new therapeutic strategies for alleviating these stresses.
One of the most prominent features of SCLC cells is their ability to secrete a variety of neuropeptides,
particularly bombesin-like peptides such as the gastrin-releasing peptide (GRP). Our central hypothesis is that GRP
enhances the sensitivity of the pulmonary chemosensitive nerve endings, leading to the development of these
pulmonary stresses. Furthermore, we hypothesize that the sensitizing effect of GRP is mediated through an
activation of the BB2 bombesin receptor expressed on the neuronal membrane ofthese sensory nerves, which leads
to the activation of protein kinase C and enhances the excitability of these neurons. These sensory neurons, upon
stimulation, can release tachykinins that have been shown to activate the signal transduction pathways and
promote growth of SCLC cells. To test our hypotheses, pulmonary chemosensitive neurons will be isolated and
cultured from adult Sprague-Dawley rats. We will apply the perforated patch-clamp and fura-2 based ratiometric
~2+ imaging techniques to determine the change in sensitivity of these neurons induced by GRP. We will also
determine whether tachykinins increase the release of (}RP from human SCLC cells. Our preliminary data have
already demonstrated the feasibility and potential significance of the proposed study.
We predict that GRP perfusion will cause a left-shift of the dose response curves to the chemical stimulants
in pulmonary chemosensitive neuron. This sensitizing effect will be significantly attenuated by pretreatment with
the selective antagonist of the BB2 receptor. We further predict that selective PKC inhibitor will attenuate the
sensitizing actions of GRP on pulmonary C neurons. Iftachykinins trigger the release of GRP from SCLC cells,
GRP can in turn induce hypersensitivity of pulmonary C neurons, which will then evoke further release of
tachykinins. Such a positive feed-back loop may play a part in the autocrine function of the bombesin-like
peptides in the pathogenesis of SCLC.
The results obtained from this study should provide critical information for gaining new insight into the
signal transduction mechanisms underlying the hypersensitivity of pulmonary sensory neurons induced by GRP.
The information should, therefore, help to improve our understanding of the pathogenic role of this interaction
between the cancer cells and the sensory nerves, and to develop new therapeutic strategies for reducing the
pulmonary stresses in patients suffering from SCLC.
Status | Finished |
---|---|
Effective start/end date | 7/1/08 → 6/30/10 |
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.