NIRT: Tailored Fluorinated Surfactant Templates for the Design of Ordered Nanoporous Ceramics

Grants and Contracts Details


This interdisciplinary research team will address using a new class of structure directing agents, fluorinated surfactants, for the design of ordered nanoporous metal oxides and organic-inorganic hybrid materials. Fluorinated surfactants provide a novel platform for both templating of and recovery from ordered porous materials because they assemble more readily than hydrocarbon surfactants, form stable phases of low interfacial curvature, and are both hydrophobic and lipophobic. Departing from a traditional technique based on hydrocarbon surfactants we will first systematically explore the effects of fluorinated surfactant structure on the templating of porous silica. With a goal of designing surfactant-templated nanostructures with more tightly controlled pore architecture, this project will integrate molecular simulations, fluorinated surfactant synthesis, phase characterization, and materials synthesis techniques. We also will exploit the selective solubility of fluorinated species in low surface tension fluids (such as supercritical carbon dioxide) to enhance template recovery from nanoporous ceramics. Because fluorinated surfactants can be extracted under mild conditions, their use is expected to improve methods of synthesizing organic-inorganic hybrid materials with nanostructured pores. The co-assembly of molecular precursors allows the synthesis of nanostructured ceramics that approach the functionality and efficiency of biological materials. "Functionalizing" the pore walls with selected molecular fragments further enhances the potential of these inorganic materials for catalysts, separation materials, sensors and miniaturized diagnostic devices. The synergistic approach to the research and educational activities of this project will advance the fluorosurfactant-based design of new nanosystems by molecular templating and organic functionalization.
Effective start/end date8/15/027/31/07


  • National Science Foundation: $1,106,000.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.