Ordered Molecular Transporters

  • Hinds, Bruce (PI)

Grants and Contracts Details


Executive Summary Due to a nearly frictionless interface, fluid flow through carbon nanotube ICNT) cores j.., 1C"le) 10Jd faster than through nm-scale pores of conventional materials. For membrane-ba"cd ..!l.'mical separations,tbe 1)ores must be of molecular dimensions to allow for efficient chetl11cal 01 e1 ectrostatic interactic n:;. The enhanced fluid flow in the CNT can enable high t1ux chemical sl.parations that dramaticaJly reduce system size and power efficiency. Manmade rebust ~ tr'JctuT.~S ,;an be designed to ni rnic natural protein channels with both high flux and precise chcrnil:ai selectivity. This wi~lrc:;ult in a new class of nanoscale devices that defy entropic forces by JYJolecular ordering to selectively transport gasses and fluids. The Hinds lab has recently c,:v~'l, jll d .1process to u:lifonnly mix SWCNT in epoxy which can be cut into thin (-Sum) slices'»' ;;"'.:nHome technique tha is commonly used in biological microscopy. The resulting membLlJ1e:; n,ive 2-5% SWCi'JTs :rossing epoxy matrix to form a membrane. There are two maor fon.'; arCi.S tl) realize: 1) Ele:::tri,. 1ield induced dipole orientation; Natural protein channels. That Invl: (rcers of magnitude better performance than any man-made system, rely on the precise od~rlng)f
Effective start/end date2/18/092/17/14


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.