Grants and Contracts Details
Description
Stroke is the third leading cause of death and the leading cause of serious, long-term
disability in the U.S. However, while advances have been made in acute stroke treatment, our
understanding of the mechanisms underlying brain self-repair after stroke remains poor.
Therefore, the problem of brain repair and stroke rehabilitation is an emerging research
priority, with the underlying goal of identifying and improving brain reparative processes.
Brain repair reportedly occurs in a close temporal-spatial peri-infarct neurovascular niche of
revascularization (angiogenesis) and neuronal repopulation (neurogenesis). We hypothesize
that the post-stroke brain stimulates angiogenesis and neurovascular niche formation in part
by generating a bioactive fragment of the extracellular matrix (ECM), perlecan. Our hypothesis
is based on several key observations including our preliminary data: Stroke results in
proteolytic generation of bioactive fragments of perlecan, the most protease-sensitive ECM
component studied, and perlecan is required for both angiogenesis and neurogenesis. Our
preliminary studies indicate that the C-terminal fragment of perlecan, domain V (DV), a
previously identified modifier of angiogenesis, 1) is upregulated in the brain after stroke, 2)
enhances brain angiogenesis in vitro and in vivo, 3) increases brain endothelial cell secretion
of brain derived neurotrophic factor (BDNF), an important pro-angiogenic, neuroprotective and
migration promoting factor in the neurovascular niche, and 4) may exert these effects through
the pro-angiogenic á5â1 integrin. Empowered by this new knowledge, we now plan to 1)
Determine the role of DV in brain angiogenesis and neurovascular niche formation, 2)
Determine the integrin-related signaling pathway by which DV affects brain angiogenesis and
neurovascular niche formation, and 3) Determine the importance and therapeutic potential of
DV to post-stroke brain repair. Specifically, we plan to demonstrate that DV stimulates brain
angiogenesis and neurovascular niche formation via interaction with the á5â1 integrin and
subsequent release of BDNF, and demonstrate that DV enhances post-stroke brain repair. The
proposed studies are significant in that they investigates differences between brain and
nonbrain angiogenesis, seek to establish a novel mechanism of post-stroke brain self-repair for
therapeutic exploitation, and suggests a significantly longer therapeutic window than currently
employed stroke therapies. Our investigation is innovative because it suggests that ECM
fragments generated by brain injury could possess beneficial effects and identifies a novel
cause of brain endothelial cell BDNF release. Our long term goal is to develop DV as a human
stroke therapy.
Status | Finished |
---|---|
Effective start/end date | 4/1/10 → 3/31/15 |
Funding
- National Institute of Neurological Disorders & Stroke: $886,482.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.