Projects and Grants per year
Grants and Contracts Details
Description
The American Cancer Society’s estimates for bladder cancer in the United States for 2022 are about
81,180 new cases and about 17,100 deaths. The treatment of bladder cancer includes surgery,
intravesical, chemo-, radiation, immuno- and targeted therapies. Over 70% of bladder cancer patients
with non-muscle invasive bladder cancer (NMIBC) survive for more than 5 years postdiagnosis. However,
the 5-year survival rate drops to 35% when invasive cancer is diagnosed. Drug resistance is observed in
more than 30% of cases after chemotherapy. A cystectomy is recommended for these patients, which is
accompanied by a significant reduction in the quality of life and high costs to the health care system.
Cytochrome P450s (CYPs) are responsible for metabolic activation of carcinogens and overexpressed in
several cancers, including bladder cancer.1, 2 Overexpression of CYP2A6 and 1B1 is associated with
chemotherapy resistance, and silencing of CYP2A6 resulted in improved cell killing.3 Therefore, CYP1B1
and 2A proteins can be considered as therapeutic targets, and inhibition or degradation of these
proteins could overcome the cisplatin resistance in chemotherapy of bladder cancer.
The objective of this project is to develop new systems for inhibition and degradation of CYP proteins
overexpressed in bladder cancer and associated with drug resistance. The strategy relies on two
synthetic approaches: 1) PROTAC (PROteolysis TArgeting Chimera) and 2) photocaging. The selected
approaches are independent, but connected through the targeting of CYP proteins. The two synthetic
aims also were developed to work independently OR in combination. The approach is validated by
literature precedent, as PROTAC molecules have been proven to degrade important proteins, such as
Brd4, FKBP12, ER, and BTK.4 Indeed, the pharmaceutical company Arvinas has developed PROTACs
targeting the androgen receptor and estrogen receptors that have progressed into a phase 2 clinical
study. However, it has emerged that PROTAC approaches still have undesired effects, because systemic
application can affect untargeted tissue, a disadvantage shared with traditional inhibitor-based
therapeutics.
The first Specific Aim is to develop the CYP-based PROTACs for ubiquitination and degradation of the
CYP2A or 1B1 proteins by the proteasome. The second Specific Aim is to utilize photocaging approaches
for development of Ru(II) based prodrugs that are activated with red light, and will possess a rapid
photorelease of CYP-inhibitors or PROTACs. Finally, the third Specific Aim is to investigate the toxicity in
vivo for new PROTACs and Ru-based prodrugs.
In summary, this proposal seeks to develop new multifunction compounds that will target proteins
associated with the invasive phenotype of bladder cancer and resistance to chemotherapy. These
compounds will be synthesized with the ability for light independent (Aim 1) and light dependent (Aim
2) inactivation of CYPs, resulting in restoration of chemosensitivity of bladder cancer cells to
chemotherapy.
Status | Finished |
---|---|
Effective start/end date | 6/1/22 → 9/30/22 |
Funding
- American Cancer Society
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Projects
- 1 Finished