Grants and Contracts Details
Description
Obesity is a disorder of energy balance in which dietary consumption of carbohydrates and fats
exceeds their rate of catabolism. Storage of unexpended fuels as triglycerides results in an
expansion of visceral adipose tissue and has a broader impact on the lipid composition of cells
and tissues resulting in susceptibility to cardiovascular and metabolic disease. Mitochondria
play a central role in energy homeostasis, generating ATP by oxidative metabolism of
carbohydrates and fatty acids. Mitochondria are membranous organelles containing proteins
that are encoded in part by their intrinsic DNA and in part by nuclear genes. Mitochondria divide
by binary fission which ensures transfer of mitochondria to a daughter cell during cell division.
In conjunction with transcriptional regulation of mitochondrial protein expression this process
also dictates the number and size of mitochondria in a cell, coordinating the demand for aerobic
respiration with energy status. The lipid composition of mitochondria is distinct and lipids
regulate mitochondrial oxidative metabolism and homeostasis through effects on mitochondrial
fusion and fission and on the activity of mitochondrial membrane proteins. We discovered that a
master metabolic regulator called lipin1 is recruited to the surface of mitochondria where it
participates in a signaling pathway that promotes mitochondrial fission and remodels
mitochondrial lipids. Lipin1 is a phosphatidic acid (PA) phosphatase enzyme that catalyzes the
penultimate step in triglyceride synthesis at the cytoplasmic surface of the endoplasmic
reticulum and also serves as a nuclear transcriptional co-activator of PPAR-alpha; responsive
genes. Fatty acid oxidation is markedly impaired in lipin1 deficient mice. We therefore
hypothesize that that localization of lipin1 to mitochondria promotes oxidative metabolism
through effects on mitochondrial homeostasis and lipid composition. We will test this hypothesis
by defining the mechanism of lipin1 recruitment to the mitochondrial surface, determining the
effect of lipin1-promoted alterations in mitochondrial number, size and lipid composition on
mitochondrial oxidative metabolism and dissecting the contribution mitochondrial dysfunction to
the phenotype of lipin1 deficient mice. Completion of this work will identify a molecular
mechanism by which lipin 1 functions as a reciprocal regulator of triglyceride synthesis and
mitochondrial oxidative metabolism.
Status | Finished |
---|---|
Effective start/end date | 7/1/11 → 6/30/12 |
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.