Grants and Contracts Details
Description
Neuronal replacement strategies using stem cells or fetal ttlsplaLlts are potential treatments for neurological
disorders caused by damage or degeneration of specific neural circuits in the central nervous system (CNS).
Parkinson's disease (PD) is one such disorder, caused by the degeneration of dopaminergic neurons in the
substantia nigra. Many investigators have already explored neural transplantation as therapy for PD, both in the
lab and in the clinic, but in most cases, dopaminergic neurons are transplanted directly into their target - the
striatum - rather than into their site of origin, the substantia nigra (SN). This leads to incomplete recovery of
function both in animal models and in human PD patients, because the transplanted neurons provide a dopamine
source to the striatum but do not reestablish the degenerated neural circuit. This proposal shall examine the
hypothesis that a growth-supportive pathway created between the SN and the striatum can guide the growth of
axons from dopaminergic neurons transplanted into the SN of the parkinsonian brain, resulting in an anatomically
and physiologically correct reestablishment of the nigrostriatal pathway and an amelioration of parkinsonian
symptoms. Preliminary data is presented showing that a combination of glial cell line-derived neurotrophic factor
(GDNF) and it's alpha- 1 co-receptor (GFR-ct 1) or netrin- 1 support long distance axon growth from dopaminergic
transplants in the SN to the striatum. In this study, a series of experiments are proposed to further enhance the
growth along the pathway and targeting within the striatum. The specific aims are to: 1) examine these and other
potential growth factor candidates either individually and in combination for their ability to support long distance
growth of dopaminergic axons within the adult brain; 2) examine the ability BDNF and chondroitinase to enhance
axon branching and synaptogenesis within the adult striatum; 3) reconstruct the nigrostriatal pathway using data
acquired from Aims 1 and 2 and examine functional recovery; 4) examine the release of dopamine, cell type
specificity (A9/A 10 neurons), and synaptic connectivity of dopaminergic axons re-innervating the striatum. The
outcome of these studies will demonstrate the feasibility of targeting the growth of axons using neuronal
replacement to ameliorate the symptoms of Parkinson's disease. These studies will also provide a model for
developing neuronal replacement strategies for other neurological disorders.
Status | Finished |
---|---|
Effective start/end date | 4/15/09 → 8/31/11 |
Funding
- National Institute of Neurological Disorders & Stroke: $964,240.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.