Projects and Grants per year
Grants and Contracts Details
Description
The objective of this grant is to elucidate the regulation, downstream signaling, and structural
dynamics of the glucan phosphatase laforin. Mammalian cells store readily mobilized energy in the form of
glycogen, a water-soluble carbohydrate. Recessive mutations in genes encoding the E3 ubiquitin ligase maim
or the dual specificity phosphatase laforin disrupt glycogen metabolism and result in a fatal, neurodegenerative
epilepsy called Lafora disease (LD). A hallmark of LO is poorly branched, hyperphosphorylated insoluble
carbohydrate accumulations called Lafora bodies (LBs), thought to be the causative agent of LD.
We established that maIm is a single-subunit E3 ubiquitin ligase that ubiquitinates and triggers the
degradation of multiple proteins involved in glycogen metabolism. In addition, we discovered that laforin is the
founding member of a unique class of phosphatases that dephosphorylate phospho-glucans. These results
allowed us to propose molecular mechanisms that cause LD: 1) loss of maim results in LBs due to an
imbalance in glycogen metabolism proteins, i.e. protein levels are not properly maintained; 2) loss of laforin
results in LBs due to glucan hyperphosphorylation that inhibits glucan branching; 3) laforin also acts as a
targeting subunit for maIm, so that loss of laforin disrupts some maIm-directed ubiquitination events. While we
have made significant strides in determining the molecular mechanisms of LD, we lack an understanding of
how these enzymes are regulated. This proposal will elucidate the deficiencies in our current knowledge.
We recently identified novel phosphorylation and ubiquitination events on laforin. Phosphorylation and
ubiquitination are post-translational modifications that direct changes in protein concentration, enzymatic
activity, protein localization, protein-protein interactions, and structural dynamics, In Aim I we will define the in
vivo conditions triggering laforin phosphorylation and characterize the functional consequences. We will utilize
1) overexpression and endogenous protein levels in tissue culture cells to monitor the status of laforin
localization and modification, 2) assay laforin function in vitro using purified proteins, and 3) utilize a LD mouse
model to verify our results. In Aim 2, we will utilize a similar strategy to determine the affects of ubiquitination
on laforin function. In addition, we will define the role of laforin in maIm directed ubiquitination, as we have
recently discovered that laforin acts as a targeting protein for maIm. In Aim 3, we will determine how
perturbations of the structural components of glucan phosphatases contribute to LD. We will utilize Hydrogen-
Deuterium exchange mass spectrometry to define the structural dynamics of laforin and x-ray crystallography
to determine the structure of a glucan phosphatase. This proposal is built on our past discoveries and
uses complementary approaches to advance our understanding of the intercalated events of cell
metabolism, neurodegeneration, and epilepsy. Completion of this work will yield a befter understanding of
these complex events and will produce therapeutic insights for epilepsy and neurodegeneration.
Status | Finished |
---|---|
Effective start/end date | 7/1/10 → 4/30/15 |
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Projects
- 1 Finished
-
Supplement for CORY WHITE: Regulation, signaling, and dynamics of glucan phosphatases
Gentry, M.
7/1/10 → 4/30/14
Project: Research project