Grants and Contracts Details
Description
Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) is a progressive and fatal
neurodegenerative disease. A general symptom of ALS is muscle weakness and wasting triggered by
denervation at neuromuscular junctions. The majority of ALS cases are sporadic, and approximately 10% are
familial. Several ALS genes have been identified as their mutation can lead to familial ALS, including two
genes encoding RNA processing proteins TDP-43 and fused in sarcoma/translocated in liposarcoma
(FUS/TLS). FUS is a ubiquitously expressed multi-domain RNA-binding protein. In neurons and glial cells, FUS
is almost exclusively localized to the nucleus but is also reported to transport mRNA for local translation in
dendrites in neurons. In addition, FUS plays a role in a variety of processes including nucleocytoplasmic
shuttling of mRNA, transcriptional regulation and mRNA splicing. However, little is known regarding how FUS
mutations cause motor neuron degeneration and ALS, which is the focus of this study.
We recently published that the C-terminus of FUS, where the ALS-causing mutations are clustered,
functions as an effective nuclear localization sequence (NLS). Our newly generated data suggest that a FUSinteracting
protein Gemin3 plays a critical role in the perturbations caused by FUS mutations. Gemin3 can be
sequestered by ALS mutant FUS, which causes reduced Gemin3-positive nuclear structures (Gems),
decreased assembly of snRNPs, and attenuated spliceosome activity. The Drosophila model we established
showed motor function deficiency when FUS was over-expressed in motor neurons. Interestingly,
Gemin3 was also reported to be required for larval motor function in Drosophila. Moreover, we generated
FUS/Gemin3 double transgenic flies and showed that expression of Gemin3 rescued the phenotypes of
FUS transgenic flies. We thus hypothesize that the ALS-related FUS mutants or WT FUS with deregulated
over-expression can accumulate in cytoplasm and sequester Gemin3, which results in decreased assembly of
snRNPs in cytoplasm and compromised spliceosome function in the nucleus. To test the central hypothesis,
three specific aims have been designed to determine the role of FUS in ALS.
Aim 1 is to understand the regulation of FUS subcellular localization by the localization sequence
elements within FUS as well as by its RNA binding ability. In Aim 2, we will first determine the molecular
mechanism how FUS and Gemin 3 interact. We will further characterize how FUS mutations disturb Gemin 3-
mediated snRNP assembly and spliceosome activity. Aim 3 will test the molecular mechanisms defined in
Aims 1 and 2 using the Drosophila model. We will first determine whether motor neuron death and
neuromuscular denervation are prominent in the transgenic flies with motor neuron-specific FUS expression.
FUS-mediated Gemin3 sequestering and subsequent spliceosome changes will be especially tested in flies
since Gemin3 over-expression rescued the motor function deficit phenotype caused by FUS. Furthermore, the
significance of FUS subcellular localization and RNA binding in producing toxicity in motor neurons will be
investigated. Lastly, we will carry out RNA-Seq experiment to determine the FUS-mediated splicing alterations.
This project will utilize the combination of cellular and Drosophila models to investigate the FUSmediated
ALS etiology. The findings are expected to provide critical insights into the mechanisms by which
FUS mutations perturb the RNA processing pathways and ultimately lead to the disease.
Status | Finished |
---|---|
Effective start/end date | 8/15/11 → 4/30/17 |
Funding
- National Institute of Neurological Disorders & Stroke: $1,284,759.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.