Grants and Contracts Details
Description
The homohexameric N-ethylmaleimide Sensitive Factor (NSF) is a key element in most
physiologically important vesicular trafficking and exocytosis events (i.e. neurotransmission,
hemostasis, immune responses). As an AAA ATPase, NSF acts as a "protein helicase" unwinding
spent SNARE (SNAP receptor) complexes after they have mediated membrane fusion.
Dysfunction of NSF leads to stark phenotypes such as paralysis or growth arrest. NSF protomers
have three contiguous domains (NSF-N, NSF-D1, and NSF-D2); each contributes uniquely to
activity. Despite our advances, little is known about which structural elements are required for NSF
to bind its adaptor protein, alpha SNAP (Soluble NSF Attachment Proteins), and to use the
chemical energy from ATP hydrolysis to disassemble SNARE complexes. This proposal's Specific
Aims focus on these key unanswered questions. The Aims are: 1) To determine which structural
features of NSF-N are required for SNAP-SNARE complex binding and SNAP-mediated stimulation
of the A TPase activity of NSF. 2) To determine what structural elements of NSF-D1 promote SNAPdependent
enhancement of nucleotide hydrolysis and facilitate the conformational changes needed
for SNAP-SNARE binding and disassembly. 3) To determine the conformational changes that occur
in NSF as it progresses through the different nucleotide states of its A TP hydrolysis cycle. For the
first two aims, structure-based mutagenesis will be combined with a battery of functional assays to
assess the importance of specific regions of NSF. For the third aim, cryo-electron microscopy and
single particle image analysis will be used to generate 3D maps of the NSF hexamer in the different
nucleotide-induced conformations (ADP, ATP, and ADP-Pi). These structures will then be
compared to determine what parts of the NSF hexamer change and how they might shift
conformations during the ATP hydrolysis cycle. From the knowledge generated by the experiments
in these three specific aims, it will be possible to better understand the catalytic mechanism of NSF
as well as that of a number of other cellular ATPases of the AAA family.
Status | Finished |
---|---|
Effective start/end date | 9/20/04 → 6/30/09 |
Funding
- National Institute of Neurological Disorders & Stroke: $1,128,534.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.