Abstract
We present a practical and inexpensive method to reconstruct 3D scenes that include piece-wise planar transparent objects. Our work is motivated by the need for automatically generating 3D models of interior scenes, in which glass structures are common. These large structures are often invisible to cameras or even our human visual system. Existing 3D reconstruction methods for transparent objects are usually not applicable in such a room-size reconstruction setting. Our approach augments a regular depth camera (e.g., the Microsoft Kinect camera) with a single ultrasonic sensor, which is able to measure distance to any objects, including transparent surfaces. We present a novel sensor fusion algorithm that first segments the depth map into different categories such as opaque/transparent/infinity (e.g., too far to measure) and then updates the depth map based on the segmentation outcome. Our current hardware setup can generate only one additional point measurement per frame, yet our fusion algorithm is able to generate satisfactory reconstruction results based on our probabilistic model. We highlight the performance in many challenging indoor benchmarks.
Original language | English |
---|---|
Title of host publication | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
Pages | 4885-4893 |
Number of pages | 9 |
ISBN (Electronic) | 9781467369640 |
DOIs | |
State | Published - Oct 14 2015 |
Event | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States Duration: Jun 7 2015 → Jun 12 2015 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 07-12-June-2015 |
ISSN (Print) | 1063-6919 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 6/7/15 → 6/12/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition