A blending model for parametrically defined geometric objects

Ai Ping Bien, Fuhua Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

A blending model for parametrically defined geometric objects is presented. This blending model, based on a generalized parametric equation, provides insight of the blending nature of many of the curve and surface techniques. It also provides solution to some of the surface/surface intersection and surface/surface blending problems. By carefully designing the blending functions, it can handle 3-sided blending as well. The blending model does not depend on any particular surface representation. CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Geometric Algorithms, Language, and Systems; J.6 [Computer Applications]: Computer-Aided Engineering-computer-aided design (CAD) General Term: Algorithms, Theory Additional Key Words and Phrases: splines, Bezier curves/surface, transition surface, blending surface, surface/surface intersection.

Original languageEnglish
Title of host publicationProceedings of the 1st ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA 1991
Pages339-347
Number of pages9
DOIs
StatePublished - May 1 1991
Event1st ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA 1991 - Austin, United States
Duration: Jun 5 1991Jun 7 1991

Publication series

NameProceedings of the 1st ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA 1991

Conference

Conference1st ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA 1991
Country/TerritoryUnited States
CityAustin
Period6/5/916/7/91

ASJC Scopus subject areas

  • Computer Science (all)

Fingerprint

Dive into the research topics of 'A blending model for parametrically defined geometric objects'. Together they form a unique fingerprint.

Cite this