TY - JOUR
T1 - A Cotyledon-based Virus-Induced Gene Silencing (Cotyledon-VIGS) approach to study specialized metabolism in medicinal plants
AU - Liu, Yongliang
AU - Lyu, Ruiqing
AU - Singleton, Joshua J.
AU - Patra, Barunava
AU - Pattanaik, Sitakanta
AU - Yuan, Ling
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Background: Virus-induced gene silencing (VIGS) is widely used in plant functional genomics. However, the efficiency of VIGS in young plantlets varies across plant species. Additionally, VIGS is not optimized for many plant species, especially medicinal plants that produce valuable specialized metabolites. Results: We evaluated the efficacy of five-day-old, etiolated seedlings of Catharanthus roseus (periwinkle) for VIGS. The seedlings were vacuum-infiltrated with Agrobacterium tumefaciens GV3101 cells carrying the tobacco rattle virus (TRV) vectors. The protoporphyrin IX magnesium chelatase subunit H (ChlH) gene, a key gene in chlorophyll biosynthesis, was used as the target for VIGS, and we observed yellow cotyledons 6 days after infiltration. As expected, the expression of CrChlH and the chlorophyll contents of the cotyledons were significantly decreased after VIGS. To validate the cotyledon based-VIGS method, we silenced the genes encoding several transcriptional regulators of the terpenoid indole alkaloid (TIA) biosynthesis in C. roseus, including two activators (CrGATA1 and CrMYC2) and two repressors (CrGBF1 and CrGBF2). Silencing CrGATA1 led to downregulation of the vindoline pathway genes (T3O, T3R, and DAT) and decreased vindoline contents in cotyledons. Silencing CrMYC2, followed by elicitation with methyl jasmonate (MeJA), resulted in the downregulation of ORCA2 and ORCA3. We also co-infiltrated C. roseus seedlings with TRV vectors that silence both CrGBF1 and CrGBF2 and overexpress CrMYC2, aiming to simultaneous silencing two repressors while overexpressing an activator. The simultaneous manipulation of repressors and activator resulted in significant upregulation of the TIA pathway genes. To demonstrate the broad application of the cotyledon-based VIGS method, we optimized the method for two other valuable medicinal plants, Glycyrrhiza inflata (licorice) and Artemisia annua (sweet wormwood). When TRV vectors carrying the fragments of the ChlH genes were infiltrated into the seedlings of these plants, we observed yellow cotyledons with decreased chlorophyll contents. Conclusions: The widely applicable cotyledon-based VIGS method is faster, more efficient, and easily accessible to additional treatments than the traditional VIGS method. It can be combined with transient gene overexpression to achieve simultaneous up- and down-regulation of desired genes in non-model plants. This method provides a powerful tool for functional genomics of medicinal plants, facilitating the discovery and production of valuable therapeutic compounds.
AB - Background: Virus-induced gene silencing (VIGS) is widely used in plant functional genomics. However, the efficiency of VIGS in young plantlets varies across plant species. Additionally, VIGS is not optimized for many plant species, especially medicinal plants that produce valuable specialized metabolites. Results: We evaluated the efficacy of five-day-old, etiolated seedlings of Catharanthus roseus (periwinkle) for VIGS. The seedlings were vacuum-infiltrated with Agrobacterium tumefaciens GV3101 cells carrying the tobacco rattle virus (TRV) vectors. The protoporphyrin IX magnesium chelatase subunit H (ChlH) gene, a key gene in chlorophyll biosynthesis, was used as the target for VIGS, and we observed yellow cotyledons 6 days after infiltration. As expected, the expression of CrChlH and the chlorophyll contents of the cotyledons were significantly decreased after VIGS. To validate the cotyledon based-VIGS method, we silenced the genes encoding several transcriptional regulators of the terpenoid indole alkaloid (TIA) biosynthesis in C. roseus, including two activators (CrGATA1 and CrMYC2) and two repressors (CrGBF1 and CrGBF2). Silencing CrGATA1 led to downregulation of the vindoline pathway genes (T3O, T3R, and DAT) and decreased vindoline contents in cotyledons. Silencing CrMYC2, followed by elicitation with methyl jasmonate (MeJA), resulted in the downregulation of ORCA2 and ORCA3. We also co-infiltrated C. roseus seedlings with TRV vectors that silence both CrGBF1 and CrGBF2 and overexpress CrMYC2, aiming to simultaneous silencing two repressors while overexpressing an activator. The simultaneous manipulation of repressors and activator resulted in significant upregulation of the TIA pathway genes. To demonstrate the broad application of the cotyledon-based VIGS method, we optimized the method for two other valuable medicinal plants, Glycyrrhiza inflata (licorice) and Artemisia annua (sweet wormwood). When TRV vectors carrying the fragments of the ChlH genes were infiltrated into the seedlings of these plants, we observed yellow cotyledons with decreased chlorophyll contents. Conclusions: The widely applicable cotyledon-based VIGS method is faster, more efficient, and easily accessible to additional treatments than the traditional VIGS method. It can be combined with transient gene overexpression to achieve simultaneous up- and down-regulation of desired genes in non-model plants. This method provides a powerful tool for functional genomics of medicinal plants, facilitating the discovery and production of valuable therapeutic compounds.
KW - Artemisia annua
KW - Catharanthus roseus
KW - Cotyledon-VIGS
KW - Glycyrrhiza inflata
UR - http://www.scopus.com/inward/record.url?scp=85185322345&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85185322345&partnerID=8YFLogxK
U2 - 10.1186/s13007-024-01154-x
DO - 10.1186/s13007-024-01154-x
M3 - Article
AN - SCOPUS:85185322345
SN - 1746-4811
VL - 20
JO - Plant Methods
JF - Plant Methods
IS - 1
M1 - 26
ER -