Abstract
A blended drag coefficient model is constructed using a series of empirical relations based on Reynolds number, Mach number, and Knudsen number. When validated against experiments, the drag coefficient model produces matching values with a standard deviation error of 2.84% and a maximum error of 11.87%. The model is used in a Lagrangian code which is coupled to a hypersonic aerothermodynamic CFD code, and the particle velocity and trajectory are validated against experimental results. The comparative results agree well and show that the new blended drag coefficient model is capable of predicting the particle motion accurately over a range of Reynolds number, Mach number, and Knudsen number.
Original language | English |
---|---|
Article number | 108706 |
Journal | International Journal of Heat and Fluid Flow |
Volume | 87 |
DOIs | |
State | Published - Feb 2021 |
Bibliographical note
Publisher Copyright:© 2020 Elsevier Inc.
Keywords
- Aerothermodynamics
- Drag coefficient
- Hypersonics
- Lagrangian Particle Trajectory
- Particle-laden flows
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanical Engineering
- Fluid Flow and Transfer Processes