TY - JOUR
T1 - A formula for p-completion by way of the Segal conjecture
AU - Reeh, Sune Precht
AU - Schlank, Tomer M.
AU - Stapleton, Nathaniel
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - The Segal conjecture describes stable maps between classifying spaces in terms of (virtual) bisets for the finite groups in question. Along these lines, we give an algebraic formula for the p-completion functor applied to stable maps between classifying spaces purely in terms of fusion data and Burnside modules.
AB - The Segal conjecture describes stable maps between classifying spaces in terms of (virtual) bisets for the finite groups in question. Along these lines, we give an algebraic formula for the p-completion functor applied to stable maps between classifying spaces purely in terms of fusion data and Burnside modules.
KW - Burnside ring
KW - Fusion systems
KW - Segal conjecture
KW - Spectra
KW - p-completion
UR - http://www.scopus.com/inward/record.url?scp=85139738720&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139738720&partnerID=8YFLogxK
U2 - 10.1016/j.topol.2022.108255
DO - 10.1016/j.topol.2022.108255
M3 - Article
AN - SCOPUS:85139738720
SN - 0166-8641
VL - 322
JO - Topology and its Applications
JF - Topology and its Applications
M1 - 108255
ER -