A heart cell group model for the identification of myocardial ischemia

Mohamed A. Mneimneh, Micheal T. Johnson, Richard J. Povinelli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Due to the increasing prices of medical care, and especially due to cardiovascular injury; scientists are looking for inexpensive and less invasive ways to diagnose myocardial ischemia. Many studies have shown that the variations of the ST-segment in the ECG signal are an indicator for ischemia. For this purpose, this work proposes an approach based on a heart cell group model and principle component analysis, using a decision tree classifier to differentiate between the ischemic and healthy beats. The cardiac based model is based on a physiological model of the electrical cycle of depolarization and repolarization of the atria and ventricles. The model parameters are estimated by minimizing the squared error between the generated signal and the recorded ECG. The approach is applied to beats from the Long-Term ST database, which consists of 86 subjects and more than 20,000 beats in which 80% of the beats are ischemic and 20% are healthy. A 10-fold cross validation test is performed over the dataset. The accuracy of this approach is 91.62%, with sensitivity of 95.09% and specificity of 75.66%.

Original languageEnglish
Title of host publicationHEALTHINF 2008 - 1st International Conference on Health Informatics, Proceedings
Pages51-58
Number of pages8
StatePublished - 2008
Event1st International Conference on Health Informatics, HEALTHINF 2008 - Funchal, Madeira, Portugal
Duration: Jan 28 2008Jan 31 2008

Publication series

NameHEALTHINF 2008 - 1st International Conference on Health Informatics, Proceedings
Volume2

Conference

Conference1st International Conference on Health Informatics, HEALTHINF 2008
Country/TerritoryPortugal
CityFunchal, Madeira
Period1/28/081/31/08

Keywords

  • Decision tree
  • Inverse problem
  • Ischemia

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics
  • Health Information Management

Fingerprint

Dive into the research topics of 'A heart cell group model for the identification of myocardial ischemia'. Together they form a unique fingerprint.

Cite this