TY - JOUR
T1 - A JWST/NIRSpec Exploration of the Connection between Ionization Parameter, Electron Density, and Star-formation-rate Surface Density in z = 2.7-6.3 Galaxies
AU - Reddy, Naveen A.
AU - Topping, Michael W.
AU - Sanders, Ryan L.
AU - Shapley, Alice E.
AU - Brammer, Gabriel
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - We examine the factors responsible for the variation in the ionization parameter (U) of high-redshift star-forming galaxies based on medium-resolution JWST/NIRSpec observations obtained by the Cosmic Evolution Early Release Science survey. The sample consists of 48 galaxies with redshifts z spec = 2.7−6.3, which are largely representative of typical galaxies at these redshifts. The [S ii] λ λ6718, 6733 doublet is used to estimate electron densities (n e ), and dust-corrected Hα luminosities are used to compute ionizing photon rates (Q). Using composite spectra of galaxies in bins of [O iii] λ λ4960, 5008/[O ii] λ λ3727, 3730 (O32) as a proxy for U, we determine that galaxies with higher O32 have 〈n e〉 ≃ 500 cm−3 that are ≳5 × larger than that of lower-O32 galaxies. We do not find a significant difference in 〈Q〉 between low- and high-O32 galaxies. Photoionization modeling indicates a large spread in log U of ≈1.5 dex at a fixed Z neb. On the other hand, the data indicate a highly significant correlation between U and star-formation-rate surface density (ΣSFR), which appears to be redshift invariant at z ∼ 1.6−6.3, and possibly up to z ∼ 9.5. We consider several avenues through which metallicity and ΣSFR (or gas density) may influence U, including variations in n e and Q, internal dust extinction of ionizing photons, and the effects of gas density on the volume filling fraction. Based on these considerations, we conclude that gas density may play a more central role than metallicity in modulating U at these redshifts.
AB - We examine the factors responsible for the variation in the ionization parameter (U) of high-redshift star-forming galaxies based on medium-resolution JWST/NIRSpec observations obtained by the Cosmic Evolution Early Release Science survey. The sample consists of 48 galaxies with redshifts z spec = 2.7−6.3, which are largely representative of typical galaxies at these redshifts. The [S ii] λ λ6718, 6733 doublet is used to estimate electron densities (n e ), and dust-corrected Hα luminosities are used to compute ionizing photon rates (Q). Using composite spectra of galaxies in bins of [O iii] λ λ4960, 5008/[O ii] λ λ3727, 3730 (O32) as a proxy for U, we determine that galaxies with higher O32 have 〈n e〉 ≃ 500 cm−3 that are ≳5 × larger than that of lower-O32 galaxies. We do not find a significant difference in 〈Q〉 between low- and high-O32 galaxies. Photoionization modeling indicates a large spread in log U of ≈1.5 dex at a fixed Z neb. On the other hand, the data indicate a highly significant correlation between U and star-formation-rate surface density (ΣSFR), which appears to be redshift invariant at z ∼ 1.6−6.3, and possibly up to z ∼ 9.5. We consider several avenues through which metallicity and ΣSFR (or gas density) may influence U, including variations in n e and Q, internal dust extinction of ionizing photons, and the effects of gas density on the volume filling fraction. Based on these considerations, we conclude that gas density may play a more central role than metallicity in modulating U at these redshifts.
UR - http://www.scopus.com/inward/record.url?scp=85166592158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85166592158&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acd754
DO - 10.3847/1538-4357/acd754
M3 - Article
AN - SCOPUS:85166592158
SN - 0004-637X
VL - 952
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 167
ER -