TY - JOUR
T1 - A liquid parahydrogen target for the measurement of a parity-violating gamma asymmetry in n→+p→d+γ
AU - Santra, S.
AU - Barrn Palos, L.
AU - Blessinger, C.
AU - Bowman, J. D.
AU - Chupp, T. E.
AU - Covrig, S.
AU - Crawford, C.
AU - Dabaghyan, M.
AU - Dadras, J.
AU - Dawkins, M.
AU - Gericke, M. T.
AU - Fox, W.
AU - Gillis, R. C.
AU - Leuschner, M. B.
AU - Lozowski, B.
AU - Mahurin, R.
AU - Mason, M.
AU - Mei, J.
AU - Nann, H.
AU - Penttila, S. I.
AU - Salas-Bacci, A.
AU - Sharma, M.
AU - Snow, W. M.
AU - Wilburn, W. S.
PY - 2010
Y1 - 2010
N2 - A 16 l liquid parahydrogen target has been developed for a measurement of the parity-violating γ-asymmetry in the capture of polarized cold neutrons on protons in the np→dγ reaction by the NPDGamma collaboration. The target system was carefully designed to meet the stringent requirements on systematic effects for the experiment and also to satisfy hydrogen safety requirements. The target was designed to preserve the neutron polarization during neutron scattering on liquid hydrogen (LH2), optimize the statistical sensitivity to the np→dγ reaction, minimize backgrounds coming from neutron interaction with the beam windows of the target cryostat, minimize LH2 density fluctuations which can introduce extra noise in the gamma asymmetry signal, and control systematic effects. The target incorporates two mechanical refrigerators, two orthopara convertors, an aluminum cryostat, an aluminum target vessel shielded with 6Li-rich plastic, a hydrogen fill/vent line with a passive recirculation loop to establish and maintain the equilibrium orthopara ratio, a hydrogen relief system coupled to a vent stack, a gas handling system, and an alarm and interlock system. Low Z, nonmagnetic materials were used for the target vessel and cryostat. Pressure and temperature sensors monitored the thermodynamic state of the target. Relative neutron transmission measurements were used to monitor the parahydrogen fraction of the target. The target was thoroughly tested and successfully operated during the first phase of the NPDGamma experiment conducted at the FP12 beam line at Los Alamos Neutron Science Center (LANSCE). An upgraded version of the target system will be used in the next stage of the experiment, which will be performed at the Fundamental Neutron Physics Beam (FnPB) line of the Spallation Neutron Source at Oak Ridge National Laboratory.
AB - A 16 l liquid parahydrogen target has been developed for a measurement of the parity-violating γ-asymmetry in the capture of polarized cold neutrons on protons in the np→dγ reaction by the NPDGamma collaboration. The target system was carefully designed to meet the stringent requirements on systematic effects for the experiment and also to satisfy hydrogen safety requirements. The target was designed to preserve the neutron polarization during neutron scattering on liquid hydrogen (LH2), optimize the statistical sensitivity to the np→dγ reaction, minimize backgrounds coming from neutron interaction with the beam windows of the target cryostat, minimize LH2 density fluctuations which can introduce extra noise in the gamma asymmetry signal, and control systematic effects. The target incorporates two mechanical refrigerators, two orthopara convertors, an aluminum cryostat, an aluminum target vessel shielded with 6Li-rich plastic, a hydrogen fill/vent line with a passive recirculation loop to establish and maintain the equilibrium orthopara ratio, a hydrogen relief system coupled to a vent stack, a gas handling system, and an alarm and interlock system. Low Z, nonmagnetic materials were used for the target vessel and cryostat. Pressure and temperature sensors monitored the thermodynamic state of the target. Relative neutron transmission measurements were used to monitor the parahydrogen fraction of the target. The target was thoroughly tested and successfully operated during the first phase of the NPDGamma experiment conducted at the FP12 beam line at Los Alamos Neutron Science Center (LANSCE). An upgraded version of the target system will be used in the next stage of the experiment, which will be performed at the Fundamental Neutron Physics Beam (FnPB) line of the Spallation Neutron Source at Oak Ridge National Laboratory.
KW - Bubble suppression
KW - Cryorefrigerator
KW - Hydrogen safety
KW - Liquid parahydrogen
KW - Neutron depolarization
KW - Ortho-to-para converters
KW - Parity-violation
KW - γ-asymmetry
UR - http://www.scopus.com/inward/record.url?scp=77955513643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955513643&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2010.04.135
DO - 10.1016/j.nima.2010.04.135
M3 - Article
AN - SCOPUS:77955513643
SN - 0168-9002
VL - 620
SP - 421
EP - 436
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
IS - 2-3
ER -