Abstract
Rodent models are widely used for the experimental analysis of sleep. While this is motivated by similarities in brain circuitry and electrophysiological rhythms, unlike the circadian sleep-wake cycle in humans, rodent sleep is polyphasic, containing multiple bouts of sleep and wake minutes to hours in duration over the course of a day. Each sleep bout is punctuated by several brief arousals several seconds to minutes long. Physiologically motivated mathematical models replicate the shorter timescale of arousal within sleep, but not the longer one representing prolonged wakefulness. Here, we adapt a previously published 'flip-flop' model of human sleep to capture the ultradian alternation of sleep and wakefulness in mice on the longer timescale. The resulting model reproduces both the mean durations of alternating sleep and wake bouts as well as the circadian trends in their bout durations documented in our experiments on mice.
Original language | English |
---|---|
Title of host publication | 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
Pages | 1656-1659 |
Number of pages | 4 |
ISBN (Electronic) | 9781457702204 |
DOIs | |
State | Published - Oct 13 2016 |
Event | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States Duration: Aug 16 2016 → Aug 20 2016 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2016-October |
ISSN (Print) | 1557-170X |
Conference
Conference | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 8/16/16 → 8/20/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics