A neural network having fewer inner constants to be trained and Bayesian decision

Yoshifusa Ito, Cidambi Srinivasan, Hiroyuki Izumi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The number of constants in a neural network, such as connection weights and threshold, to be trained may decide directly the complexity of its learning space and, consequently, impact the learning process. It is also probable that the locations of the constants are related to the complexity. In addition, a constant to be trained at the first step of the BP learning may not add to the complexity of the learning space in comparison to those to be trained at the later steps. This paper, reflecting the above perspective, proposes a one-hidden-layer neural network with less complex learning space compared to that of ordinary one-hidden-layer neural networks. In particular, we construct a one-hidden-layer neural network having fewer constants to be trained, most of which are trained at the first step of the BP training. The network has more hidden-layer units than the required minimum for approximation but the number of constants to be trained is smaller. The goal of the network is to overcome the difficulties during statistical learning with dichotomous random teacher signals. As an example, we apply it to the approximation of a Bayesian discriminant function.

Original languageEnglish
Title of host publicationThe 2007 International Joint Conference on Neural Networks, IJCNN 2007 Conference Proceedings
Pages2993-2998
Number of pages6
DOIs
StatePublished - 2007
Event2007 International Joint Conference on Neural Networks, IJCNN 2007 - Orlando, FL, United States
Duration: Aug 12 2007Aug 17 2007

Publication series

NameIEEE International Conference on Neural Networks - Conference Proceedings
ISSN (Print)1098-7576

Conference

Conference2007 International Joint Conference on Neural Networks, IJCNN 2007
Country/TerritoryUnited States
CityOrlando, FL
Period8/12/078/17/07

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'A neural network having fewer inner constants to be trained and Bayesian decision'. Together they form a unique fingerprint.

Cite this