A new approach to light-weight ablators analysis: From micro-tomography measurements to statistical analysis and modeling

Nagi N. Mansour, Francesco Panerai, Alexandre Martin, Dilworth Y. Parkinson, Alastair A. MacDowell, Abdelmoula Haboub, Timothy A. Sandstrom, Tony Fast, Gerard L. Vignoles, Jean Lachaud

Research output: Contribution to conferencePaperpeer-review

28 Scopus citations

Abstract

The morphology characteristics and ablation behavior of a highly porous carbon fiber preform are studied using a combined experimental/numerical approach. Morphological characterization of the three-dimensional structure of the material is performed by hard X-rays synchrotron micro-tomography at the Advanced Light Source of Lawrence Berkeley National Laboratory. The resulting micro-tomography voxels are used to compute geometrical properties of the carbon preform, like porosity, specific surface area and tortuosity, that are otherwise indirectly measured through experimental techniques. The reconstructed volumes are used to build a computational grid for numerical simulations of the fibers' ablation. By modeling the diffusion of oxygen through the porous medium using Lagrangian methods, and the oxidation at the carbon fibers' surface using a reactivity model, the ablation of the carbon fibers are simulated for a range of Thiele numbers. It is shown that in the diffusion limited regime (large Thiele number), the ablation of the fibers occurs at the surface of the material. In the reaction limited regime (low Thiele number), the oxygen penetrates into the fibers, resulting in volumetric ablation and high material spallation.

Original languageEnglish
StatePublished - 2013
Event44th AIAA Thermophysics Conference - San Diego, CA, United States
Duration: Jun 24 2013Jun 27 2013

Conference

Conference44th AIAA Thermophysics Conference
Country/TerritoryUnited States
CitySan Diego, CA
Period6/24/136/27/13

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'A new approach to light-weight ablators analysis: From micro-tomography measurements to statistical analysis and modeling'. Together they form a unique fingerprint.

Cite this