A novel nature-inspired optimization based neural network simulator to predict coal grindability index

S. Yazdani, Esmaeil Hadavandi, James Hower, Saeed Chehreh Chelgani

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Purpose: Hardgrove grindability index (HGI) is an important physical parameter used to demonstrate the relative hardness of coal particles. Modeling of HGI based on coal conventional properties is a quite complicated procedure. The paper aims to develop a new accurate model for prediction of HGI that is called optimized evolutionary neural network (OPENN). Design/methodology/approach: The procedure for generation of the proposed OPENN predictive model was performed in two stages. In the first stage, as the high dimensionality involved in the input space, a correlation-based feature selection (CFS) algorithm was used to select the most important influencing variables for HGI prediction. In the second stage, a combination of differential evolution (DE) and biography-based optimization (BBO) algorithms as a global search method were applied to evolve weights of a multi-layer perception neural network. Findings: The proposed OPENN was examined and compared with other typical models using a wide range of Kentucky coal samples. The testing results showed that the accuracy of the proposed OPENN model is significantly better than the other typical models and can be considered as a promising alternative for HGI prediction. Originality/value: As HGI test is relatively expensive procedure, there is an economical interest on HGI modeling based on coal conventional properties (proximate, ultimate and petrography); the proposed OPENN model to estimate HGI would be a valuable and practical tool for coal industry.

Original languageEnglish
Pages (from-to)1003-1048
Number of pages46
JournalEngineering Computations (Swansea, Wales)
Volume35
Issue number2
DOIs
StatePublished - 2018

Bibliographical note

Publisher Copyright:
© 2018, Emerald Publishing Limited.

Keywords

  • Biography-based optimization
  • Coal
  • Differential evolution
  • Hardgrove grindability index
  • Neural networks

ASJC Scopus subject areas

  • Software
  • Engineering (all)
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'A novel nature-inspired optimization based neural network simulator to predict coal grindability index'. Together they form a unique fingerprint.

Cite this