TY - JOUR
T1 - A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease
AU - Inglese, Marianna
AU - Patel, Neva
AU - Linton-Reid, Kristofer
AU - Loreto, Flavia
AU - Win, Zarni
AU - Perry, Richard J.
AU - Carswell, Christopher
AU - Grech-Sollars, Matthew
AU - Crum, William R.
AU - Lu, Haonan
AU - Malhotra, Paresh A.
AU - Silbert, Lisa C.
AU - Lind, Betty
AU - Crissey, Rachel
AU - Kaye, Jeffrey A.
AU - Carter, Raina
AU - Dolen, Sara
AU - Quinn, Joseph
AU - Schneider, Lon S.
AU - Pawluczyk, Sonia
AU - Becerra, Mauricio
AU - Teodoro, Liberty
AU - Dagerman, Karen
AU - Spann, Bryan M.
AU - Brewer, James
AU - Vanderswag, Helen
AU - Fleisher, Adam
AU - Ziolkowski, Jaimie
AU - Heidebrink, Judith L.
AU - Zbizek-Nulph,
AU - Lord, Joanne L.
AU - Zbizek-Nulph, Lisa
AU - Petersen, Ronald
AU - Mason, Sara S.
AU - Albers, Colleen S.
AU - Knopman, David
AU - Johnson, Kris
AU - Villanueva-Meyer, Javier
AU - Pavlik, Valory
AU - Pacini, Nathaniel
AU - Lamb, Ashley
AU - Kass, Joseph S.
AU - Doody, Rachelle S.
AU - Shibley, Victoria
AU - Chowdhury, Munir
AU - Rountree, Susan
AU - Dang, Mimi
AU - Stern, Yaakov
AU - Honig, Lawrence S.
AU - Jicha, Gregory A.
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Alzheimer’s disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. Methods: We developed a predictive model that computes multi-regional statistical morpho-functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores. For each patient, a biomarker called “Alzheimer’s Predictive Vector” (ApV) was derived using a two-stage least absolute shrinkage and selection operator (LASSO). Results: The ApV reliably discriminates between people with (ADrp) and without (nADrp) Alzheimer’s related pathologies (98% and 81% accuracy between ADrp - including the early form, mild cognitive impairment - and nADrp in internal and external hold-out test sets, respectively), without any a priori assumptions or need for neuroradiology reads. The new test is superior to standard hippocampal atrophy (26% accuracy) and cerebrospinal fluid beta amyloid measure (62% accuracy). A multiparametric analysis compared DTI-MRI derived fractional anisotropy, whose readout of neuronal loss agrees with ADrp phenotype, and SNPrs2075650 is significantly altered in patients with ADrp-like phenotype. Conclusions: This new data analytic method demonstrates potential for increasing accuracy of Alzheimer diagnosis.
AB - Background: Alzheimer’s disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. Methods: We developed a predictive model that computes multi-regional statistical morpho-functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores. For each patient, a biomarker called “Alzheimer’s Predictive Vector” (ApV) was derived using a two-stage least absolute shrinkage and selection operator (LASSO). Results: The ApV reliably discriminates between people with (ADrp) and without (nADrp) Alzheimer’s related pathologies (98% and 81% accuracy between ADrp - including the early form, mild cognitive impairment - and nADrp in internal and external hold-out test sets, respectively), without any a priori assumptions or need for neuroradiology reads. The new test is superior to standard hippocampal atrophy (26% accuracy) and cerebrospinal fluid beta amyloid measure (62% accuracy). A multiparametric analysis compared DTI-MRI derived fractional anisotropy, whose readout of neuronal loss agrees with ADrp phenotype, and SNPrs2075650 is significantly altered in patients with ADrp-like phenotype. Conclusions: This new data analytic method demonstrates potential for increasing accuracy of Alzheimer diagnosis.
UR - http://www.scopus.com/inward/record.url?scp=85190658452&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85190658452&partnerID=8YFLogxK
U2 - 10.1038/s43856-022-00133-4
DO - 10.1038/s43856-022-00133-4
M3 - Article
AN - SCOPUS:85190658452
VL - 2
JO - Communications Medicine
JF - Communications Medicine
IS - 1
M1 - 70
ER -