TY - GEN
T1 - A silicon SPECT system for molecular imaging of the mouse brain
AU - Shokouhi, Sepideh
AU - Fritz, Mark A.
AU - McDonald, Benjamin S.
AU - Durko, Heather L.
AU - Furenlid, Lars R.
AU - Wilson, Donald W.
AU - Peterson, Todd E.
PY - 2007
Y1 - 2007
N2 - We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.
AB - We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.
UR - http://www.scopus.com/inward/record.url?scp=48149087454&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48149087454&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2007.4436717
DO - 10.1109/NSSMIC.2007.4436717
M3 - Conference contribution
AN - SCOPUS:48149087454
SN - 1424409233
SN - 9781424409235
T3 - IEEE Nuclear Science Symposium Conference Record
SP - 2782
EP - 2784
BT - 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS-MIC
T2 - 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS-MIC
Y2 - 27 October 2007 through 3 November 2007
ER -