TY - JOUR
T1 - A Single Outer-Sphere Mutation Stabilizes apo-Mn Superoxide Dismutase by 35 °c and Disfavors Mn Binding
AU - Miller, Anne Frances
AU - Wang, Ting
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/7/25
Y1 - 2017/7/25
N2 - The catalytic active site of Mn-specific superoxide dismutase (MnSOD) is organized around a redox-active Mn ion. The most highly conserved difference between MnSODs and the homologous FeSODs is the origin of a Gln in the second coordination sphere. In MnSODs it derives from the C-terminal domain whereas in FeSODs it derives from the N-terminal domain, yet its side chain occupies almost superimposable positions in the active sites of these two types of SODs. Mutation of this Gln69 to Glu in Escherichia coli FeSOD increased the Fe3+/2+ reduction midpoint potential by >0.6 V without disrupting the structure or Fe binding [ Yikilmaz, E., Rodgers, D. W., and Miller, A.-F. (2006) Biochemistry 45 (4), 1151-1161 ]. We now describe the analogous Q146E mutant of MnSOD, explaining its low Mn content in terms increased stability of the apo-Mn protein. In 0.8 M guanidinium HCl, Q146E-apoMnSOD displays an apparent melting midpoint temperature (Tm) 35 °C higher that of wild-type (WT) apoMnSOD, whereas the Tm of WT-holoMnSOD is only 20 °C higher than that of WT-apoMnSOD. In contrast, the Tm attributed to Q146E-holoMnSOD is 40 °C lower than that of Q146E-apoMnSOD. Thus, our data refute the notion that the WT residues optimize the structural stability of the protein and instead are consistent with conservation on the basis of enzyme function and therefore ability to bind metal ion. We propose that the WT-MnSOD protein conserves a destabilizing amino acid at position 146 as part of a strategy to favor metal ion binding.
AB - The catalytic active site of Mn-specific superoxide dismutase (MnSOD) is organized around a redox-active Mn ion. The most highly conserved difference between MnSODs and the homologous FeSODs is the origin of a Gln in the second coordination sphere. In MnSODs it derives from the C-terminal domain whereas in FeSODs it derives from the N-terminal domain, yet its side chain occupies almost superimposable positions in the active sites of these two types of SODs. Mutation of this Gln69 to Glu in Escherichia coli FeSOD increased the Fe3+/2+ reduction midpoint potential by >0.6 V without disrupting the structure or Fe binding [ Yikilmaz, E., Rodgers, D. W., and Miller, A.-F. (2006) Biochemistry 45 (4), 1151-1161 ]. We now describe the analogous Q146E mutant of MnSOD, explaining its low Mn content in terms increased stability of the apo-Mn protein. In 0.8 M guanidinium HCl, Q146E-apoMnSOD displays an apparent melting midpoint temperature (Tm) 35 °C higher that of wild-type (WT) apoMnSOD, whereas the Tm of WT-holoMnSOD is only 20 °C higher than that of WT-apoMnSOD. In contrast, the Tm attributed to Q146E-holoMnSOD is 40 °C lower than that of Q146E-apoMnSOD. Thus, our data refute the notion that the WT residues optimize the structural stability of the protein and instead are consistent with conservation on the basis of enzyme function and therefore ability to bind metal ion. We propose that the WT-MnSOD protein conserves a destabilizing amino acid at position 146 as part of a strategy to favor metal ion binding.
UR - http://www.scopus.com/inward/record.url?scp=85025821362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025821362&partnerID=8YFLogxK
U2 - 10.1021/acs.biochem.7b00175
DO - 10.1021/acs.biochem.7b00175
M3 - Article
C2 - 28704037
AN - SCOPUS:85025821362
SN - 0006-2960
VL - 56
SP - 3787
EP - 3799
JO - Biochemistry
JF - Biochemistry
IS - 29
ER -