Abstract
Synaptic maintenance is essential for neural circuit function. In the C. elegans locomotor circuit, motor neurons are in direct contact with the epidermis. Here, we reveal a novel epidermal-neuronal interaction mediated by a two-immunoglobulin domain transmembrane protein, ZIG-10, that is necessary for maintaining cholinergic synapse density. ZIG-10 is localized at the cell surface of epidermis and cholinergic motor neurons, with high levels at areas adjacent to synapses. Loss of zig-10 increases the number of cholinergic excitatory synapses and exacerbates convulsion behavior in a seizure model. Mis-expression of zig-10 in GABAergic inhibitory neurons reduces GABAergic synapse number, dependent on the presence of ZIG-10 in the epidermis. Furthermore, ZIG-10 interacts with the tyrosine kinase SRC-2 to regulate the phagocytic activity of the epidermis to restrict cholinergic synapse number. Our studies demonstrate the highly specific roles of non-neuronal cells in modulating neural circuit function, through neuron-type-specific maintenance of synapse density. Maintenance of synapses is required for robust circuit function during the lifetime of an animal. Cherra and Jin have identified a novel two-Ig-domain transmembrane protein that mediates the interaction between neurons and epidermis to maintain synapse density through phagocytosis in C. elegans.
Original language | English |
---|---|
Pages (from-to) | 325-336 |
Number of pages | 12 |
Journal | Neuron |
Volume | 89 |
Issue number | 2 |
DOIs | |
State | Published - 2016 |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Inc..
Keywords
- C. elegans
- Excitation inhibition balance
- Locomotion
- Non-neuronal cells
- Synapse maintenance
ASJC Scopus subject areas
- General Neuroscience