TY - JOUR
T1 - Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication
T2 - Impacts of sources and climate change
AU - Zhang, Hanxiao
AU - Huo, Shouliang
AU - Yeager, Kevin M.
AU - Xi, Beidou
AU - Zhang, Jingtian
AU - He, Zhuoshi
AU - Ma, Chunzi
AU - Wu, Fengchang
N1 - Publisher Copyright:
© 2018
PY - 2018/10
Y1 - 2018/10
N2 - Information on both the climate change and anthropogenic activities on lacustrine ecosystem is of crucial importance for understanding the current state and future development of lake systems. The sediment profiles of arsenic, mercury, other metals, and nutrients were used to investigate climate change and anthropogenic activities impacts on three lakes located on the Yunnan-Guizhou Plateau (Lake Chenghai, Qionghai) and Northeastern Plain region (Lake Jingpohu) of China. The enrichment factor (EF), geoaccumulation index (Igeo) and anthropogenic factor (AF) were used to assess the enrichment degree of metals. The results show that these lakes have been progressively eutrophied since the development of widespread industrialization and urbanization in these areas. The enrichment of heavy metals is generally not serious (EF < 1.5, Igeo < 0), except for Cd, Pb, and Hg in Lakes Chenghai and Qionghai. Correlation analysis shows that generally, the heavy metals characterized had significant correlations with nutrient concentrations (TOC, δ13C, TP), which implied the establishment of geochemical associations during transport, that they had similar anthropogenic sources (such as fertilizers), or both. Cluster analysis grouped nutrients, As, and most other metals (except Ca, Mg, Fe, Al), the annual average temperature, and annual precipitation into one category. Increases in both average annual air temperatures and total precipitation are likely influencing the input of heavy metals and nutrients to these lakes.
AB - Information on both the climate change and anthropogenic activities on lacustrine ecosystem is of crucial importance for understanding the current state and future development of lake systems. The sediment profiles of arsenic, mercury, other metals, and nutrients were used to investigate climate change and anthropogenic activities impacts on three lakes located on the Yunnan-Guizhou Plateau (Lake Chenghai, Qionghai) and Northeastern Plain region (Lake Jingpohu) of China. The enrichment factor (EF), geoaccumulation index (Igeo) and anthropogenic factor (AF) were used to assess the enrichment degree of metals. The results show that these lakes have been progressively eutrophied since the development of widespread industrialization and urbanization in these areas. The enrichment of heavy metals is generally not serious (EF < 1.5, Igeo < 0), except for Cd, Pb, and Hg in Lakes Chenghai and Qionghai. Correlation analysis shows that generally, the heavy metals characterized had significant correlations with nutrient concentrations (TOC, δ13C, TP), which implied the establishment of geochemical associations during transport, that they had similar anthropogenic sources (such as fertilizers), or both. Cluster analysis grouped nutrients, As, and most other metals (except Ca, Mg, Fe, Al), the annual average temperature, and annual precipitation into one category. Increases in both average annual air temperatures and total precipitation are likely influencing the input of heavy metals and nutrients to these lakes.
KW - Arsenic
KW - Climate change
KW - Eutrophication
KW - Heavy metals
KW - Lake sediments
KW - Mercury
KW - Trophic status
UR - http://www.scopus.com/inward/record.url?scp=85047653673&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047653673&partnerID=8YFLogxK
U2 - 10.1016/j.ecolind.2018.05.059
DO - 10.1016/j.ecolind.2018.05.059
M3 - Article
AN - SCOPUS:85047653673
SN - 1470-160X
VL - 93
SP - 771
EP - 780
JO - Ecological Indicators
JF - Ecological Indicators
ER -