TY - JOUR
T1 - Actin Re-Distribution in Response to Hydrogen Peroxide in Airway Epithelial Cells
AU - Boardman, Kendrick C.
AU - Aryal, Ashish M.
AU - Miller, William M.
AU - Waters, Christopher M.
PY - 2004/4
Y1 - 2004/4
N2 - Reactive oxygen species (ROS) disrupt the barrier function of airway epithelial cells through a mechanism that appears to involve remodeling of the actin cytoskeleton. Similarly, keratinocyte growth factor (KGF) has been shown to protect against ROS-induced loss of barrier function through a mechanism that may also involve the actin cytoskeleton. To further determine the role of the actin cytoskeleton in ROS-induced barrier injury, we quantified the relative amount of total actin associated with the cytoskeleton following exposure to hydrogen peroxide (H2O2) and pretreatment with KGF. We also determined the role of the actin-myosin contractile mechanism in the process by quantifying the relative amount of myosin heavy chain (MHC) associated with the cytoskeleton. While the transepithelial resistance (TER) of a monolayer of airway epithelial cells (Calu-3) decreased after 2 h of continuous exposure to 0.5 mM H2O2, actin and MHC, both dissociated from the cytoskeleton within 15 min of H2O2 exposure. The TER of the monolayers remained depressed although both actin and myosin returned to the cytoskeleton by 4 h after the initiation of H 2O2 exposure. Filamentous actin (f-actin) staining suggested that the re-associating actin took the form of short fibers associated with cortical actin rather than long stress fibers. Furthermore, pretreatment with KGF prevented the loss of actin and MHC from the actin cytoskeleton but did not prevent the decrease in TER. These studies suggest that actin disassembly from the cytoskeleton is important in the loss of barrier function, but that it is not the overall amount of actin that is associated with the cytoskeleton that is important, rather it is the contribution this actin makes to the architectural cohesiveness of the cell that contributes to the barrier function.
AB - Reactive oxygen species (ROS) disrupt the barrier function of airway epithelial cells through a mechanism that appears to involve remodeling of the actin cytoskeleton. Similarly, keratinocyte growth factor (KGF) has been shown to protect against ROS-induced loss of barrier function through a mechanism that may also involve the actin cytoskeleton. To further determine the role of the actin cytoskeleton in ROS-induced barrier injury, we quantified the relative amount of total actin associated with the cytoskeleton following exposure to hydrogen peroxide (H2O2) and pretreatment with KGF. We also determined the role of the actin-myosin contractile mechanism in the process by quantifying the relative amount of myosin heavy chain (MHC) associated with the cytoskeleton. While the transepithelial resistance (TER) of a monolayer of airway epithelial cells (Calu-3) decreased after 2 h of continuous exposure to 0.5 mM H2O2, actin and MHC, both dissociated from the cytoskeleton within 15 min of H2O2 exposure. The TER of the monolayers remained depressed although both actin and myosin returned to the cytoskeleton by 4 h after the initiation of H 2O2 exposure. Filamentous actin (f-actin) staining suggested that the re-associating actin took the form of short fibers associated with cortical actin rather than long stress fibers. Furthermore, pretreatment with KGF prevented the loss of actin and MHC from the actin cytoskeleton but did not prevent the decrease in TER. These studies suggest that actin disassembly from the cytoskeleton is important in the loss of barrier function, but that it is not the overall amount of actin that is associated with the cytoskeleton that is important, rather it is the contribution this actin makes to the architectural cohesiveness of the cell that contributes to the barrier function.
UR - http://www.scopus.com/inward/record.url?scp=1042291171&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1042291171&partnerID=8YFLogxK
U2 - 10.1002/jcp.10451
DO - 10.1002/jcp.10451
M3 - Article
C2 - 14978735
AN - SCOPUS:1042291171
SN - 0021-9541
VL - 199
SP - 57
EP - 66
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 1
ER -