Abstract
Previous studies reported the reconstitution of an Mlh1- Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2- Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2- Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1- Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1- independent and Exo1-dependent MMR.
| Original language | English |
|---|---|
| Pages (from-to) | 21580-21590 |
| Number of pages | 11 |
| Journal | Journal of Biological Chemistry |
| Volume | 290 |
| Issue number | 35 |
| DOIs | |
| State | Published - Aug 28 2015 |
Bibliographical note
Publisher Copyright:© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Funding
| Funders | Funder number |
|---|---|
| National Institutes of Health (NIH) | P01 CA92584, R01 GM50006 |
| National Institute of General Medical Sciences | F32GM106598 |
| National Institute of General Medical Sciences |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology