Activities of human DNA polymerase κ in response to the major benzo[a]pyrene DNA adduct: Error-free lesion bypass and extension synthesis from opposite the lesion

Yanbin Zhang, Xiaohua Wu, Dongyu Guo, Olga Rechkoblit, Zhigang Wang

Research output: Contribution to journalArticlepeer-review

98 Scopus citations

Abstract

In cells, the major benzo[a]pyrene DNA adduct is the highly mutagenic (+)-trans-anti-BPDE-N2-dG. In eukaryotes, little is known about lesion bypass of this DNA adduct during replication. Here, we show that purified human Polκ can effectively bypass a template (+)-trans-anti-BPDE-N2-dG adduct in an error-free manner. Kinetic parameters indicate that Polκ bypass of the (-)-trans-anti-BPDE-N2-dG adduct was ∼41-fold more efficient compared to the (+)-trans-anti-BPDE-N2-dG adduct. Furthermore, we have found another activity of human Polκ in response to the (+)- and (-)-trans-anti-BPDE-N2-dG adducts: extension synthesis from mispaired primer 3′ ends opposite the lesion. In contrast, the two adducts strongly blocked DNA synthesis by the purified human Polβ and the purified catalytic subunits of yeast Polα, Polδ, and Polε right before the lesion. Extension by human Polκ from the primer 3′ G opposite the (+)- and (-)-trans-anti-BPDE-N2-dG adducts was mediated by a -1 deletion mechanism, probably resulting from re-aligning the primer G to pair with the next template C by Polκ prior to DNA synthesis. Thus, sequence contexts 5′ to the lesion strongly affect the fidelity and mechanism of the Polκ-catalyzed extension synthesis. These results support a dual-function model of human Polκ in bypass of BPDE DNA adducts: it may function both as an error-free bypass polymerase alone and an extension synthesis polymerase in combination with another polymerase.

Original languageEnglish
Pages (from-to)559-569
Number of pages11
JournalDNA Repair
Volume1
Issue number7
DOIs
StatePublished - Jul 17 2002

Bibliographical note

Funding Information:
We thank Dr. Nicholas E. Geacintov for supporting the studies of Olga Rechkoblit and for his critical review of this manuscript. This work was supported by a New Investigator Award in Toxicology from Burroughs Wellcome Fund (Z.W.), and NIH grants CA92768 (Z.W.) and CA20851 (Nicholas E. Geacintov).

Funding

We thank Dr. Nicholas E. Geacintov for supporting the studies of Olga Rechkoblit and for his critical review of this manuscript. This work was supported by a New Investigator Award in Toxicology from Burroughs Wellcome Fund (Z.W.), and NIH grants CA92768 (Z.W.) and CA20851 (Nicholas E. Geacintov).

FundersFunder number
National Institutes of Health (NIH)CA92768
National Childhood Cancer Registry – National Cancer InstituteR01CA020851
Burroughs Wellcome Fund

    Keywords

    • Benzo[a]pyrene
    • DNA adducts
    • Lesion bypass
    • Mutagenesis
    • Polymerase κ
    • Translesion synthesis

    ASJC Scopus subject areas

    • Biochemistry
    • Molecular Biology
    • Cell Biology

    Fingerprint

    Dive into the research topics of 'Activities of human DNA polymerase κ in response to the major benzo[a]pyrene DNA adduct: Error-free lesion bypass and extension synthesis from opposite the lesion'. Together they form a unique fingerprint.

    Cite this