Adaptive fractionation therapy: I. Basic concept and strategy

Weiguo Lu, Mingli Chen, Quan Chen, Kenneth Ruchala, Gustavo Olivera

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Radiotherapy is fractionized to increase the therapeutic ratio. Fractionation in conventional treatment is determined as part of the prescription, and a fixed fraction size is used for the whole course of treatment. Due to patients' day-to-day variations on the relative distance between the tumor and the organs at risk (OAR), a better therapeutic ratio may be attained by using an adaptive fraction size. Intuitively, we want to use a larger fraction size when OAR and the tumor are far apart and a smaller fraction size when OAR and the tumor are close to each other. The concept and strategies of adaptive fractionation therapy (AFT) are introduced in this paper. AFT is an on-line adaptive technique that utilizes the variations of internal structures to get optimal OAR sparing. Changes of internal structures are classified as different configurations according to their feasibility to the radiation delivery. A priori knowledge is used to describe the probability distribution of these configurations. On-line processes include identifying the configuration via daily image guidance and optimizing the current fraction size. The optimization is modeled as a dynamic linear programming problem so that at the end of the treatment course, the tumor receives the same planned dose while OAR receives less dose than the regular fractionation delivery. Extensive simulations, which include thousands of treatment courses with each course consisting of 40 fractions, are used to test the efficiency and robustness of the presented technique. The gains of OAR sparing depend on the variations on configurations and the bounds of the fraction size. The larger the variations and the looser the bounds are, the larger the gains will be. Compared to the conventional fractionation technique with 2 Gy/fraction in 40 fractions, for a 20% variation on tumor-OAR configurations and [1 Gy, 3 Gy] fraction size bounds, the cumulative OAR dose with adaptive fractionation is 3-8 Gy, or 7-20% less than that of the regular fractionation, while maintaining the same cumulative tumor dose as prescribed.

Original languageEnglish
Pages (from-to)5495-5511
Number of pages17
JournalPhysics in Medicine and Biology
Issue number19
StatePublished - Oct 7 2008

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Adaptive fractionation therapy: I. Basic concept and strategy'. Together they form a unique fingerprint.

Cite this