Age-Dependent Changes in Bone Architecture, Patterning, and Biomechanics During Skeletal Regeneration

Kevin Hoffseth, Emily Busse, Josue Jaramillo, Jennifer Simkin, Michelle Lacey, Mimi C. Sammarco

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Mouse digit amputation provides a useful model of bone growth after injury, in that the injury promotes intramembranous bone formation in an adult animal. The digit tip is composed of skin, nerves, blood vessels, bones, and tendons, all of which regenerate after digit tip amputation, making it a powerful model for multi-tissue regeneration. Bone integrity relies upon a balanced remodeling between bone resorption and formation, which, when disrupted, results in changes to bone architecture and biomechanics, particularly during aging. In this study, we used recently developed techniques to evaluate bone patterning differences between young and aged regenerated bone. This analysis suggests that aged mice have altered trabecular spacing and patterning and increased mineral density of the regenerated bone. To further characterize the biomechanics of regenerated bone, we measured elasticity using a micro-computed tomography image-processing method combined with nanoindentation. This analysis suggests that the regenerated bone demonstrates decreased elasticity compared with the uninjured bone, but there is no significant difference in elasticity between aged and young regenerated bone. These data highlight distinct architectural and biomechanical differences in regenerated bone in both young and aged mice and provide a new analysis tool for the digit amputation model to aid in evaluating the outcomes for potential therapeutic treatments to promote regeneration.

Original languageEnglish
Article number749055
JournalFrontiers in Cell and Developmental Biology
Volume9
DOIs
StatePublished - Oct 13 2021

Bibliographical note

Publisher Copyright:
© Copyright © 2021 Hoffseth, Busse, Jaramillo, Simkin, Lacey and Sammarco.

Funding

This study was supported by a research grant from the National Institute of General Medical Sciences P20GM103629.

FundersFunder number
National Institute of General Medical SciencesP20GM103629
National Institute of General Medical Sciences

    Keywords

    • aging
    • biomechanics
    • bone
    • digit regeneration
    • elastic modulus
    • regeneration

    ASJC Scopus subject areas

    • Developmental Biology
    • Cell Biology

    Fingerprint

    Dive into the research topics of 'Age-Dependent Changes in Bone Architecture, Patterning, and Biomechanics During Skeletal Regeneration'. Together they form a unique fingerprint.

    Cite this