Aged murine hematopoietic stem cells drive aging-associated immune remodeling

Hanna Leins, Medhanie Mulaw, Karina Eiwen, Vadim Sakk, Ying Liang, Michael Denkinger, Hartmut Geiger, Reinhold Schirmbeck

Research output: Contribution to journalArticlepeer-review

65 Scopus citations


Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems stemming selectively from young or aged HSCs, we established a HSC transplantation model in T- and B-cell-deficient young RAG12/2 hosts. We report that both phenotypic and functional changes in the immune system on aging are primarily a consequence of changes in the function of HSCs on aging and, to a large extent, independent of the thymus, as young and aged HSCs reconstituted distinct T- and B-cell subsets in RAG12/2 hosts that mirrored young and aged immune systems. Importantly, aged HSCs treated with CASIN reestablished an immune system similar to that of young animals, and thus capable of mounting a strong immune response to vaccination. Our studies further imply that epigenetic signatures already imprinted in aged HSCs determine the transcriptional profile and function of HSC-derived T and B cells.

Original languageEnglish
Pages (from-to)565-576
Number of pages12
Issue number6
StatePublished - Aug 9 2018

Bibliographical note

Publisher Copyright:
© 2018 by The American Society of Hematology.

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology


Dive into the research topics of 'Aged murine hematopoietic stem cells drive aging-associated immune remodeling'. Together they form a unique fingerprint.

Cite this