Abstract
Alloreactive T cells are often specific for individual peptides that are bound to allogeneic major histocompatibility complex (MHC) molecules. Other alloreactive T cells are reported to be peptide-independent or to recognize MHC conformational changes that are induced by multiple peptides. We tested 12 anti-HLA-B7 alloreactive cytotoxic T lymphocyte (CTL) clones that bind a restricted region of HLA-B7, including three CTL clones that were generated in a protocol designed to stimulate peptide-independent T cells. All 12 CTLs recognized multiple point mutations in the HLA-B7 peptide-binding groove. Eleven of the 12 CTLs recognized specific peptides that eluted in one or two fractions on high-performance liquid chromatography (HPLC). None of the CTLs promiscuously recognized 16 HLA-B7-binding synthetic peptides, although one CTL recognized minor by-products in one synthetic peptide preparation. CTL clone KID-9 cross-reacted with allogeneic HLA-B7 and HLA-B27 molecules and recognized a distinct peptide bound to each MHC molecule. CTL clone KD-11 recognized peptides that eluted in two HPLC fractions and recognized HLA-B7- transfected peptide antigen processing defective T2 cells. These results indicate that CTL allorecognition is peptide-specific whether the allogeneic MHC molecules are expressed on normal cells or antigen processing-deficient cells.
Original language | English |
---|---|
Pages (from-to) | 351-359 |
Number of pages | 9 |
Journal | Transplantation |
Volume | 64 |
Issue number | 2 |
DOIs | |
State | Published - Jul 27 1997 |
ASJC Scopus subject areas
- Transplantation