Alterations in ionized and total blood magnesium after experimental traumatic brain injury: Relationship to neurobehavioral outcome and neuroprotective efficacy of magnesium chloride

Florence M. Bareyre, Kathryn E. Saatman, Mark A. Helfaer, Grant Sinson, Justin D. Weisser, Adrienne L. Brown, Tracy K. McIntosh

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Experimental evidence suggests that magnesium plays a role in the pathophysiological sequelae of brain injury. The present study examined the variation of blood ionized and total magnesium, as well as potassium, sodium, and ionized calcium, after experimental fluid percussion brain injury in rats. Blood ionized magnesium concentration significantly declined from 0.45 ± 0.02 to 0.32 ± 0.02 mM by 30 min postinjury and stayed depressed for the 24-h study period in vehicle-treated rats. Blood total magnesium concentration was 0.59 ± 0.01 mM and remained stable over time in brain- injured vehicle-treated animals. When magnesium chloride (125 μmol/rat) was administered 1 h postinjury, ionized magnesium levels were restored by 2 h postinjury and remained at normal values up to 24 h following brain trauma. Magnesium treatment also significantly reduced posttraumatic neuromotor impairments 1 and 2 weeks after the insult, but failed to attenuate spatial learning deficits. A significant positive and linear correlation could be established between ionized magnesium levels measured 24 h postinjury and neuromotor outcome at 1 and 2 weeks. We conclude that acute ionized magnesium measurement may be a predictor of long-term neurobehavioral outcome following head injury and that delayed administration of magnesium chloride can restore blood magnesium concentration and attenuate neurological motor deficits in brain-injured rats.

Original languageEnglish
Pages (from-to)271-280
Number of pages10
JournalJournal of Neurochemistry
Volume73
Issue number1
DOIs
StatePublished - 1999

Keywords

  • Fluid percussion
  • Ionized magnesium
  • Magnesium
  • Rats
  • Traumatic brain injury

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Alterations in ionized and total blood magnesium after experimental traumatic brain injury: Relationship to neurobehavioral outcome and neuroprotective efficacy of magnesium chloride'. Together they form a unique fingerprint.

Cite this