Alveolar macrophages in neonatal mice are inherently unresponsive to Pneumocystis murina infection

Cathryn Kurkjian, Melissa Hollifield, J. Louise Lines, Amy Rogosky, Kerry M. Empey, Mahboob Qureshi, Stephen A. Brown, Beth A. Garvy

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Pneumocystis pneumonia was first diagnosed in malnourished children and has more recently been found in children with upper respiratory symptoms. We previously reported that there is a significant delay in the immune response in newborn mice infected with Pneumocystis compared to adults (Garvy BA, Harmsen AG, Infect. Immun. 64:3987-3992, 1996, and Garvy BA, Qureshi M, J. Immunol. 165:6480-6486, 2000). This delay is characterized by the failure of neonatal lungs to upregulate proinflammatory cytokines and attract T cells into the alveoli. Here, we report that regardless of the age at which we infected the mice, they failed to mount an inflammatory response in the alveolar spaces until they were 21 days of age or older. Anti-inflammatory cytokines had some role in dampening inflammation, since interleukin-10 (IL-10)-deficient pups cleared Pneumocystis faster than wildtype pups and the neutralization of transforming growth factor beta (TGF-β) with specific antibody enhanced T cell migration into the lungs at later time points. However, the clearance kinetics were similar to those of control pups, suggesting that there is an intrinsic deficiency in the ability of innate immunity to control Pneumocystis. We found, using an adoptive transfer strategy, that the lung environment contributes to association of Pneumocystis organisms with alveolar macrophages, implying no intrinsic deficiency in the binding of Pneumocystis by neonatal macrophages. Using both in vivo and in vitro assays, we found that Pneumocystis organisms were less able to stimulate translocation of NF-?B to the nucleus of alveolar macrophages from neonatal mice. These data indicate that there is an early unresponsiveness of neonatal alveolar macrophages to Pneumocystis infection that is both intrinsic and related to the immunosuppressive environment found in neonatal lungs.

Original languageEnglish
Pages (from-to)2835-2846
Number of pages12
JournalInfection and Immunity
Issue number8
StatePublished - Aug 2012

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases


Dive into the research topics of 'Alveolar macrophages in neonatal mice are inherently unresponsive to Pneumocystis murina infection'. Together they form a unique fingerprint.

Cite this