An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound

Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, Franck Cappello

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

45 Scopus citations

Abstract

Because of the ever-increasing execution scale of scientific applications, how to store the extremely large volume of data efficiently is becoming a serious issue. A significant reduction of the scientific data size can effectively mitigate the I/O burden and save considerable storage space. Since lossless compressors suffer from limited compression ratios, error-controlled lossy compressors have been studied for years. Existing error-controlled lossy compressors, however, focus mainly on absolute error bounds, which cannot meet users' diverse demands such as pointwise relative error bounds. Although some of the state-of-the-art lossy compressors support pointwise relative error bound, the compression ratios are generally low because of the limitation in their designs and possible spiky data changes in local data regions. In this work, we propose a novel, efficient approach to perform compression based on the pointwise relative error bound with higher compression ratios than existing solutions provide. Our contribution is threefold. (1) We propose a novel transformation scheme that can transfer the pointwise relative-error-bounded compression problem to an absolute-error-bounded compression issue. We also analyze the practical properties of our transformation scheme both theoretically and experimentally. (2) We implement the proposed technique in two of the most popular absolute-error-bounded lossy compressors, SZ and ZFP. (3) We evaluate our solution using multiple real-world application data across different scientific domains on a supercomputer with up to 4,096 cores and 12 TB of data. Experiments show that our solution achieves over 1.38X dumping and 1.31X loading performance over the second-best lossy compressor, respectively.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE International Conference on Cluster Computing, CLUSTER 2018
Pages179-189
Number of pages11
ISBN (Electronic)9781538683194
DOIs
StatePublished - Oct 29 2018
Event2018 IEEE International Conference on Cluster Computing, CLUSTER 2018 - Belfast, United Kingdom
Duration: Sep 10 2018Sep 13 2018

Publication series

NameProceedings - IEEE International Conference on Cluster Computing, ICCC
Volume2018-September
ISSN (Print)1552-5244

Conference

Conference2018 IEEE International Conference on Cluster Computing, CLUSTER 2018
Country/TerritoryUnited Kingdom
CityBelfast
Period9/10/189/13/18

Bibliographical note

Funding Information:
ACKNOWLEDGMENTS This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, to support the nations exascale computing imperative. The material was supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357, and supported by the National Science Foundation under Grant No. 1619253. We acknowledge the computing resources provided on Bebop, which is operated by the Laboratory Computing Resource Center at Argonne National Laboratory.

Publisher Copyright:
© 2018 IEEE.

Keywords

  • Lossy compression
  • Point wise error bound
  • Scientific simulations

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Signal Processing

Fingerprint

Dive into the research topics of 'An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound'. Together they form a unique fingerprint.

Cite this